Skip to main content

A Complexity Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

Hyperspectral unmixing, as a blind source separation (BSS) problem, has been intensively studied from independence aspect in the last few years. However, independent component analysis (ICA) can not totally unmix all the materials out because the sources (abundance fractions) are not statistically independent. In this paper a complexity constrained nonnegative matrix factorization (CCNMF) for simultaneously recovering both constituent spectra and correspondent abundances is proposed. Three important facts are exploited: First, the spectral data are nonnegative; second, the variation of the material spectra and abundance images is smooth in time and space respectively; third, in most cases, both of the material spectra and abundances are localized. Experimentations on real data are provided to illustrate the algorithm’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Processing Mag. 19(3), 44–57 (2002)

    Article  Google Scholar 

  2. Keshava, N.: A survey of spectral unmixing algorithms. Lincoln Lab. J. 14(1), 55–73 (2003)

    Google Scholar 

  3. Parra, L., Spence, C., Sajda, P., Ziehe, A., Müller, K.R.: Unmixing hyperspectral data. In: Adv. Neural Inform. Process. Syst. 12, Denver, Colorado, USA, pp. 942–948. MIT Press, Cambridge (1999)

    Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley & Sons, Chichester (2002)

    Google Scholar 

  5. Chiang, S.-S., Chang, C.-I., Smith, J.A., Ginsberg, I.W.: Linear spectral random mixture analysis for hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing 40(2), 375–392 (2002)

    Article  Google Scholar 

  6. Chang, C.-I: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Kluwer Academic/Plenum Publishers, New York (2003)

    Google Scholar 

  7. Nascimento, J.M.P., Dias, J.M.B.: Does independent component analysis play a role in unmixing hyperspectral data? IEEE Trans. Geosci. Remote Sensing 43(1), 175–187 (2005)

    Article  Google Scholar 

  8. Stone, J.V.: Blind source separation using temporal predictability. Neural Comput. 13(7), 1559–1574 (2001)

    Article  MATH  Google Scholar 

  9. Jia, S., Qian, Y.T.: Spectral and spatial complexity based hyperspectral unmixing. IEEE Trans. Geosci. Remote Sensing (to appear)

    Google Scholar 

  10. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  11. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural Inform. Process. Syst. 13, 556–562 (2000)

    Google Scholar 

  12. Paura, V.P., Piper, J., Plemmons, R.J.: Nonnegative matrix factorization for spectral data analysis. Linear Algebra and Applications 416(1), 29–47 (2006)

    Article  MathSciNet  Google Scholar 

  13. Miao, L.D., Qi, H.R.: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sensing 45(3), 765–777 (2007)

    Article  Google Scholar 

  14. Ferrara, C.F.: Adaptive spatial/spectral detection of subpixel targets with unknown spectral characteristics. In: Proc. SPIE, vol. 2235, pp. 82–93 (1994)

    Google Scholar 

  15. Green, P.J.: Bayesian reconstructions from emission tomography data using a modified em algorithm. IEEE Trans. Med. Imag. 9(1), 84–93 (1990)

    Article  Google Scholar 

  16. Montano, A.P., Carazo, J.M., Kochi, K., Lehmann, D., P.-Marqui, R.D.: Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Trans. Pattern Anal. Machine Intell. 28(3), 403–415 (2006)

    Article  Google Scholar 

  17. Chang, C.-I, Du, Q.: Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing 42(3), 608–619 (2004)

    Article  Google Scholar 

  18. Plaza, A., Martinez, P., Perez, R., Plaza, J.: A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans. Geosci. Remote Sensing 42(3), 650–663 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jia, S., Qian, Y. (2007). A Complexity Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics