Biomarker Selection, Employing an Iterative Peak Selection Method, and Prostate Spectra Characterization for Identifying Biomarkers Related to Prostate Cancer

  • Panagiotis Bougioukos
  • Dionisis Cavouras
  • Antonis Daskalakis
  • Ioannis Kalatzis
  • George Nikiforidis
  • Anastasios Bezerianos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)


A proteomic analysis system (PAS) for prostate Mass Spectrometry (MS) spectra is proposed for differentiating normal from abnormal and benign from malignant cases and for identifying biomarkers related to prostate cancer. PAS comprised two stages, 1/a pre-processing stage, consisting of MS-spectrum smoothing, normalization, iterative peak selection, and peak alignment, and 2/a classification stage, comprising a 2-level hierarchical tree structure, employing the PNN and SVM classifiers at the 1st (normal-abnormal) and 2nd (benign-malignant) classification levels respectively. PAS first applied local thresholding, for determining the MS-spectrum noise level, and second an iterative global threshold estimation algorithm, for selecting peaks at different intensity ranges. Two optimum sub-sets of these peaks, one at each global threshold, were used to optimally design the hierarchical classification scheme and, thus, indicate the best m/z values. The information rich biomarkers 1160.8, 2082.2, 3595.9, 4275.3, 5817.3, 7653.2, that have been associated with the prostate gland, are proposed for further investigation.


Mass-Spectrometry Biomarker Selection Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McDavid, K., Lee, J., Fulton, J.P., Tonita, J., Thompson, T.D.: Prostate cancer incidence and mortality rates and trends in the united states and canada. Public Health Rep. 119, 174–186 (2004)Google Scholar
  2. 2.
    Srinivas, P.R., Srivastava, S., Hanash, S., Wright Jr., G.L.: Proteomics in early detection of cancer. Clin Chem. 47, 1901–1911 (2001)Google Scholar
  3. 3.
    Hilario, M., Kalousis, A., Pellegrini, C., Muller, M.: Processing and classification of protein mass spectra. Mass Spectrom Rev. 25, 409–449 (2006)CrossRefGoogle Scholar
  4. 4.
    Malyarenko, D.I., Cooke, W.E., Adam, B.L., Malik, G., Chen, H., Tracy, E.R., Trosset, M.W., Sasinowski, M., Semmes, O.J., Manos, D.M.: Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques. Clin. Chem. 51, 65–74 (2005)CrossRefGoogle Scholar
  5. 5.
    Jong, K., Marchiori, E., Sebag, M., van der Vaart, A.: Feature selection in proteomic pattern data with support vector machines. In: Proceedings of the (2004) 41 Google Scholar
  6. 6.
    Lilien, R.H., Farid, H., Donald, B.R.: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J. Comput. Biol. 10, 925–946 (2003)CrossRefGoogle Scholar
  7. 7.
    Petricoin, E.F., Ornstein 3rd, D.K., Paweletz, C.P., Ardekani, A., Hackett, P.S., Hitt, B.A., Velassco, A., Trucco, C., Wiegand, L., Wood, K., Simone, C.B., Levine, P.J., Linehan, W.M., Emmert-Buck, M.R., Steinberg, S.M., Kohn, E.C., Liotta, L.A.: Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst. 94, 1576–1578 (2002)Google Scholar
  8. 8.
    Qu, Y., Adam, B.L., Thornquist, M., Potter, J.D., Thompson, M.L., Yasui, Y., Davis, J., Schellhammer, P.F., Cazares, L., Clements, M., Wright Jr., G.L., Feng, Z.: Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensionality data. Biometrics 59, 143–151 (2003)CrossRefGoogle Scholar
  9. 9.
    Qu, Y., Adam, B.L., Yasui, Y., Ward, M.D., Cazares, L.H., Schellhammer, P.F., Feng, Z., Semmes, O.J., Wright Jr., G.L.: Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 48, 1835–1843 (2002)Google Scholar
  10. 10.
    Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright Jr., G.L., Qu, Y., Potter, J.D., Winget, M., Thornquist, M., Feng, Z.: A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4, 449–463 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Adam, B.L., Qu, Y., Davis, J.W., Ward, M.D., Clements, M.A., Cazares, L.H., Semmes, O.J., Schellhammer, P.F., Yasui, Y., Feng, Z., Wright Jr., G.L.: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62, 3609–3614 (2002)Google Scholar
  12. 12.
    Institute, N.C. (Accessed 24/11/2006) via the INTERNET Available:
  13. 13.
    Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74, 829–836 (1979)zbMATHCrossRefGoogle Scholar
  14. 14.
    Baggerly, K.A., Morris, J.S., Coombes, K.R.: Reproducibility of seldi-tof protein patterns in serum: Comparing datasets from different experiments. Bioinformatics 20, 777–785 (2004)CrossRefGoogle Scholar
  15. 15.
    Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)CrossRefGoogle Scholar
  16. 16.
    Christanini, N., Taylor, J.S.: An introduction to support vector machines and other kernelbased learning methods. Cambridge University Press, Cambridge (2000)Google Scholar
  17. 17.
    Theodorides, S., Koutroumbas, K.: Pattern recognition, 2nd edn. Academic Press, London (2003)Google Scholar
  18. 18.
    Ressom, H.W., Varghese, R.S., Abdel-Hamid, M., Eissa, S.A., Saha, D., Goldman, L., Petricoin, E.F., Conrads, T.P., Veenstra, T.D., Loffredo, C.A., Goldman, R.: Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics 21, 4039–4045 (2005)CrossRefGoogle Scholar
  19. 19.
    Wang, X., Zhu, W., Pradhan, K., Ji, C., Ma, Y., Semmes, O.J., Glimm, J., Mitchell, J.: Feature extraction in the analysis of proteomic mass spectra. Proteomics 6, 2095–2100 (2006)CrossRefGoogle Scholar
  20. 20.
    ExPASy. (Accessed 05/12/2006), Available via the INTERNET:
  21. 21.
    Swanson, T.A., Kim, S.I., Myers, M., Pabon, A., Philibert, K.D., Wang, M., Glucksman, M.J.: The role of neuropeptide processing enzymes in endocrine (prostate) cancer: Ec (ep24.15). Protein Pept Lett. 11, 471–478 (2004)CrossRefGoogle Scholar
  22. 22.
    Hering, F.L., Lipay, M.V., Lipay, M.A., Rodrigues, P.R., Nesralah, L.J., Srougi, M.: Comparison of positivity frequency of bcl-2 expression in prostate adenocarcinoma with low and high gleason score. Sao Paulo Med. J. 119, 138–141 (2001)CrossRefGoogle Scholar
  23. 23.
    Pan, C.X., Kinch, M.S., Kiener, P.A., Langermann, S., Serrero, G., Sun, L., Corvera, J., Sweeney, C.J., Li, L., Zhang, S., Baldridge, L.A., Jones, T.D., Koch, M.O., Ulbright, T.M., Eble, J.N., Cheng, L.: Pc cell-derived growth factor expression in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Clin Cancer Res. 10, 1333–1337 (2004)CrossRefGoogle Scholar
  24. 24.
    Chan, J.M., Stampfer, M.J., Giovannucci, E., Gann, P.H., Ma, J., Wilkinson, P., Hennekens, C.H., Pollak, M.: Plasma insulin-like growth factor-i and prostate cancer risk: A prospective study. Science 279, 563–566 (1998)CrossRefGoogle Scholar
  25. 25.
    Yu, J.X., Chao, L., Chao, J.: Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mrna. J. Biol. Chem. 270, 13483–13489 (1995)Google Scholar
  26. 26.
    Adam, B.L., Vlahou, A., Semmes, O.J., Wright Jr., G.L.: Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 1, 1264–1270 (2001)CrossRefGoogle Scholar
  27. 27.
    Magni, P., Motta, M.: Expression of neuropeptide y receptors in human prostate cancer cells. Ann. Oncol. 12(2), S27–29 (2001)CrossRefGoogle Scholar
  28. 28.
    Ruscica, M., Dozio, E., Boghossian, S., Bovo, G., Martos Riano, V., Motta, M., Magni, P.: Activation of the y1 receptor by neuropeptide y regulates the growth of prostate cancer cells. Endocrinology 147, 1466–1473 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Panagiotis Bougioukos
    • 1
  • Dionisis Cavouras
    • 2
  • Antonis Daskalakis
    • 1
  • Ioannis Kalatzis
    • 2
  • George Nikiforidis
    • 1
  • Anastasios Bezerianos
    • 1
  1. 1.Department of Medical Physics, School of Medicine, University of Patras, Rio , GR-26500Greece
  2. 2.Medical Signal and Image Processing Lab, Department of Medical Instruments Technology, Technological Educational Institute of Athens, Ag. Spyridonos Street, Aigaleo, 122 10, AthensGreece

Personalised recommendations