Skip to main content

Linearization of Stream Ciphers by Means of Concatenated Automata

  • Conference paper
  • 1124 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4707))

Abstract

Binary sequences generated by a class of linear cellular automata (multiplicative polynomial cellular automata) can be written as solutions of linear difference equations. At the same time, such solutions equal the output sequences from well known LFSR-based stream ciphers. These simple linear automata easily model complex nonlinear cryptographic generators. The modelling technique is based on the concatenation of basic 90/150 cellular automata. Some illustrative examples covering a wide range of cryptographic generators complete the work.

Work supported by Ministerio de Educación y Ciencia (Spain) Projects SEG2004-02418 and SEG2004-04352-C04-03.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bluetooth, Specifications of the Bluetooth system, Version 1.1 (February 2001), available at http://www.bluetooth.com/

  2. Caballero-Gil, P., Fúster-Sabater, A.: A Wide Family of Nonlinear Filter Function with a Large Linear Span. Information Sciences 164(4), 197–207 (2004)

    Article  MATH  Google Scholar 

  3. Cattell, K., Muzio, J.C.: Synthesis of One-Dimensional Linear Hybrid Cellular Automata. Computers-Aided Design 15(3), 325–335 (1996)

    Article  Google Scholar 

  4. Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)

    Google Scholar 

  5. Fúster-Sabater, A.: Run Distribution in Nonlinear Binary Generators, Applied Mathematics Letters. Applied Mathematics Letters 17(12), 1427–1432 (2004)

    Article  MATH  Google Scholar 

  6. Fúster-Sabater, A., Caballero-Gil, P.: Linear Automata in Cryptanalysis of Stream Ciphers. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 611–616. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Gollmann, D., Chambers, W.: Generators for Sequences with Near-Maximal Linear Equivalence. IEE Proceedings 135, 67–69 (1988)

    Google Scholar 

  8. Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)

    Google Scholar 

  9. Gong, G.: Theory and Applications of q-ary Interleaved Sequences. IEEE Trans. on Information Theory 41(2), 400–411 (1995)

    Article  MATH  Google Scholar 

  10. GSM, Global Systems for Mobile Communications, available at http://cryptome.org/gsm-a512.htm

  11. Kanso, A.: Clock-Controlled Shrinking Generators. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 443–451. Springer, Heidelberg (2003)

    Google Scholar 

  12. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334, 3–33 (2005)

    Article  MATH  Google Scholar 

  13. Key, E.L.: An Analysis of the Structure and Complexity of Nonlinear Binary Sequence Generators. IEEE Trans. Informat. Theory 22(6), 732–736 (1976)

    Article  MATH  Google Scholar 

  14. Rueppel, R.A., Ciphers, S., Gustavus, i., Simmons, J.: Contemporary Cryptology, The Science of Information, pp. 65–134. IEEE Press, Los Alamitos (1992)

    Google Scholar 

  15. Serra, M., Slater, T., Muzio, J.C., Miller, D.M.: The Analysis of One-dimensional Linear Cellular Automata and Their Aliasing Properties. IEEE Trans. on Computer-Aided Design 9(7), 767–778 (1990)

    Article  Google Scholar 

  16. Sun, X., Kontopidi, E., Serra, M., Muzio, J.C.: The Concatenation and Partitioning of Linear Finite State Machines. Int. J. Electronics 78, 809–839 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fúster-Sabater, A., Caballero-Gil, P. (2007). Linearization of Stream Ciphers by Means of Concatenated Automata. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74484-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74484-9_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74482-5

  • Online ISBN: 978-3-540-74484-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics