Linearization of Stream Ciphers by Means of Concatenated Automata

  • A. Fúster-Sabater
  • P. Caballero-Gil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)


Binary sequences generated by a class of linear cellular automata (multiplicative polynomial cellular automata) can be written as solutions of linear difference equations. At the same time, such solutions equal the output sequences from well known LFSR-based stream ciphers. These simple linear automata easily model complex nonlinear cryptographic generators. The modelling technique is based on the concatenation of basic 90/150 cellular automata. Some illustrative examples covering a wide range of cryptographic generators complete the work.


Stream cipher cellular automata concatenation symmetric cryptography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bluetooth, Specifications of the Bluetooth system, Version 1.1 (February 2001), available at
  2. 2.
    Caballero-Gil, P., Fúster-Sabater, A.: A Wide Family of Nonlinear Filter Function with a Large Linear Span. Information Sciences 164(4), 197–207 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cattell, K., Muzio, J.C.: Synthesis of One-Dimensional Linear Hybrid Cellular Automata. Computers-Aided Design 15(3), 325–335 (1996)CrossRefGoogle Scholar
  4. 4.
    Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Fúster-Sabater, A.: Run Distribution in Nonlinear Binary Generators, Applied Mathematics Letters. Applied Mathematics Letters 17(12), 1427–1432 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fúster-Sabater, A., Caballero-Gil, P.: Linear Automata in Cryptanalysis of Stream Ciphers. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 611–616. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gollmann, D., Chambers, W.: Generators for Sequences with Near-Maximal Linear Equivalence. IEE Proceedings 135, 67–69 (1988)Google Scholar
  8. 8.
    Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)Google Scholar
  9. 9.
    Gong, G.: Theory and Applications of q-ary Interleaved Sequences. IEEE Trans. on Information Theory 41(2), 400–411 (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    GSM, Global Systems for Mobile Communications, available at
  11. 11.
    Kanso, A.: Clock-Controlled Shrinking Generators. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 443–451. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334, 3–33 (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    Key, E.L.: An Analysis of the Structure and Complexity of Nonlinear Binary Sequence Generators. IEEE Trans. Informat. Theory 22(6), 732–736 (1976)zbMATHCrossRefGoogle Scholar
  14. 14.
    Rueppel, R.A., Ciphers, S., Gustavus, i., Simmons, J.: Contemporary Cryptology, The Science of Information, pp. 65–134. IEEE Press, Los Alamitos (1992)Google Scholar
  15. 15.
    Serra, M., Slater, T., Muzio, J.C., Miller, D.M.: The Analysis of One-dimensional Linear Cellular Automata and Their Aliasing Properties. IEEE Trans. on Computer-Aided Design 9(7), 767–778 (1990)CrossRefGoogle Scholar
  16. 16.
    Sun, X., Kontopidi, E., Serra, M., Muzio, J.C.: The Concatenation and Partitioning of Linear Finite State Machines. Int. J. Electronics 78, 809–839 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. Fúster-Sabater
    • 1
  • P. Caballero-Gil
    • 2
  1. 1.Instituto de Física Aplicada, C.S.I.C., Serrano 144, 28006 MadridSpain
  2. 2.DEIOC, University of La Laguna, 38271 La Laguna, TenerifeSpain

Personalised recommendations