Advertisement

Approximation Algorithms for 2-Source Minimum Routing Cost k-Tree Problems

  • Yen Hung Chen
  • Gwo-Liang Liao
  • Chuan Yi Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)

Abstract

In this paper, we investigate some k-tree problems of graphs with given two sources. Let G = (V,E,w) be an undirected graph with nonnegative edge lengths and two sources s 1, s 2 ∈ V. The first problem is the 2-source minimum routing cost k -tree (2-kMRCT) problem, in which we want to find a tree T = (V T ,E T ) spanning k vertices such that the total distance from all vertex in V T to the two sources is minimized, i.e., we want to minimize \(\sum_{v\in V_T} \{d_T(s_1,v)+ d_T(s_2,v)\}\), in which d T (s,v) is the length of the path between s and v on T. The second problem is the 2-source bottleneck source routing cost k -tree (2-kBSRT) problem, in which the objective function is the maximum total distance from any source to all vertices in V T , i.e., \(\max_{s\in (s_1,s_2)} \{ \sum_{v\in V_T} d_T(s,v) \}\). The third problem is the 2-source bottleneck vertex routing cost k -tree (2-kBVRT) problem, in which the objective function is the maximum total distance from any vertex in V T to the two sources , i.e., \(\max_{v\in V_T}\left\{ d_T(s_1,v)+d_T(s_2,v) \right\}\). In this paper, we present polynomial time approximation schemes (PTASs) for the 2-kMRCT and 2-kBVRT problems. For the 2-kBSRT problem, we give a (2 + ε)-approximation algorithm for any ε> 0.

Keywords

combinatorial optimization problem k-tree approximation algorithm polynomial time approximation scheme (PTAS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Karakostas, G.: A 2 + ε approximation algorithm for the k-MST problem. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 754–759 (2000)Google Scholar
  2. 2.
    Arya, S., Ramesh, H.: A 2.5-Factor approximation algorithm for the k-MST problem. Information Processing Letters 65, 117–118 (1998)CrossRefGoogle Scholar
  3. 3.
    Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k-MST problem. Journal of Computer and System Sciences 58, 101–108 (1999)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, Y.H., Wu, B.Y., Tang, C.Y.: Approximation algorithms for k-source bottleneck routing cost spanning tree problems. In: Laganà, A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 355–366. Springer, Heidelberg (2004) (extended abstract)Google Scholar
  5. 5.
    Chen, Y.H., Wu, B.Y., Tang, C.Y.: Approximation algorithms for some k-source shortest paths spanning tree problems. Networks 47, 147–156 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Connamacher, H.S., Proskurowski, A.: The complexity of minimizing certain cost metrics for k-source spanning trees. Discrete Applied Mathematics 131, 113–127 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithm, 2nd edn. MIT Press, Cambridge (2001)Google Scholar
  8. 8.
    Farley, A.M., Fragopoulou, P., Krumme, D.W., Proskurowski, A., Richards, D.: Multi-source spanning tree problems. Journal of Interconnection Networks 1, 61–71 (2000)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  10. 10.
    Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: Proceedings, 37th IEEE Symposium on Foundations of Computer Science (FOCS 1996), pp. 302–309 (1996)Google Scholar
  11. 11.
    Guérin, R., Orda, A.: Computing shortest paths for any number of hops. IEEE/ACM Transactions on Networking 10, 613–620 (2002)CrossRefGoogle Scholar
  12. 12.
    Hu, T.C.: Optimum communication spanning trees. SIAM Journal on Computing 3, 188–195 (1974)zbMATHCrossRefGoogle Scholar
  13. 13.
    Johnson, D.S., Lenstra, J.K., Rinnooy, A.H.G.: The complexity of the network design problem. Networks 8, 279–285 (1978)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ravi, R., Sundaram, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: Spanning trees short or small. SIAM Journal on Discrete Mathematics 9, 178–200 (1996)zbMATHCrossRefGoogle Scholar
  15. 15.
    Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation algorithms for some optimum communication spanning tree problems. Discrete Applied Mathematics 102, 245–266 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A polynomial time approximation scheme for minimum routing cost spanning trees. SIAM Journal on Computing 29, 761–778 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Wu, B.Y.: A polynomial time approximation scheme for the two-source minimum routing cost spanning trees. Journal of Algorithm 44, 359–378 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Wu, B.Y.: Approximation algorithms for the optimal p-source communication spanning tree. Discrete Applied Mathematics 143, 31–42 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yen Hung Chen
    • 1
  • Gwo-Liang Liao
    • 1
  • Chuan Yi Tang
    • 2
  1. 1.Department of Information Science and Management Systems, National Taitung University, 684, Sec.1, Chunghua Rd., Taitung 950, TaiwanR.O.C.
  2. 2.Department of Computer Science, National Tsing Hua University, Hsinchu 300, TaiwanR.O.C.

Personalised recommendations