FVM- and FEM-Solution of Elliptical Boundary Value Problems in Different Coordinate Systems

  • Günter Bärwolff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)


In this paper several numerical concepts for the solution of elliptical boundary value problems will be compared with regard to their efficiency, computational load and accuracy. Especially regions which are images of rectangles and cuboids of coordinate transformations will be considered. I argue that it is thus possible to construct well structured discretisations which imply equation systems with very high solution properties. The approaches discussed will be tested with instructive examples in the light of their advantages and disadvantages.


FEM FVM elliptical boundary value problem weak formulation flux balance concave edged region Cartesian and polar coordinates 

AMS classification

65N06 65N30 65N50 65Y20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, vol. 1/2. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  2. 2.
    COMSOL multiphysics 3.3, users manual, reference guide, Göttingen (2006)Google Scholar
  3. 3.
    Bärwolff, G.: Numerik für Ingenieure Physiker und Informatiker, Elsevier - Spektrum Akademischer Verlag, München (2007)Google Scholar
  4. 4.
    Großmann, Chr., Roos, H.-G.: Numerik partieller Differentialgleichungen, B.G. Teubner, Leipzig (1994)Google Scholar
  5. 5.
    Smith, G.D.: Numerical solution of partial differential equations. Clarendon Press, Oxford (1985)zbMATHGoogle Scholar
  6. 6.
    Roache, P.J.: Computational Fluid Dynamics. Hermosa Publishers, Albuquerque (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Günter Bärwolff
    • 1
  1. 1.Technische Universität Berlin, Fak. II, Inst. f. Mathematik, Str. des 17. Juni 136, D-10623 BerlinGermany

Personalised recommendations