Application of Modified ICA to Secure Communications in Chaotic Systems

  • Shih-Lin Lin
  • Pi-Cheng Tung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)


Along with the increasingly quick development of modern communication system technologies, secure communication has become increasingly important. We propose a new method for secure communication systems. Independent component analysis (ICA) is employed to retrieve the message signal encrypted by a mixture of Gaussian white noise and chaotic noise. Unlike the traditional chaotic synchronization method, this method does not require knowing the basic Gaussian white noise and chaotic noise variables. However, the signals separated by traditional ICA shows opposite phase and unequal amplitude. Our study proposed a modified ICA, which can calculate accurately the phase and amplitude. The results showed that modified ICA could effectively extract the original message signal.


Information Retrieval Independent Component Analysis Chaotic Systems Secure Communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lorenz, E.N.: Deterministic Nonperiodic Flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  2. 2.
    Carroll, T.L.: Communicating with use of Filtered Synchronized Chaotic Signals. IEEE Trans. Circuits Syst. 42, 105–110 (1995)CrossRefGoogle Scholar
  3. 3.
    Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems. Phys. Rev. E 51, 980–994 (1995)CrossRefGoogle Scholar
  4. 4.
    Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996)zbMATHGoogle Scholar
  5. 5.
    Kocarev, L.j., Parlitz, U.: Generalized Synchronization, Predictability, and Equivalence of Unidirectionally Coupled Dynamical Systems. Phys. Rev. Lett. 76, 1816–1819 (1996)CrossRefGoogle Scholar
  6. 6.
    Murali, K., Lakshmanan, M.: Secure Communication using a Compound Signal from Generalized Synchronizable Chaotic Systems. Phys. Lett. A 241, 303 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Murali, K.: Digital Signal Transmission with Cascaded Heterogeneous Chaotic System. Phys. Rev. E 63, 16217 (2000)CrossRefGoogle Scholar
  8. 8.
    Parlitz, U., Chua, L.O., Kocarev, L.j., Halle, K.S., Shang, A.: Transmission of Digital Signals by Chaotic Synchronization. Int. J. Bifurcation Chaos 2(4), 973–977 (1992)zbMATHCrossRefGoogle Scholar
  9. 9.
    Cuomo, K.M., Oppenheim, A.V.: Circuit Implementation of Synchronized Chaos with Applications to Communications. Phys. Rev. Lett. 71, 65–68 (1993)CrossRefGoogle Scholar
  10. 10.
    Dedieu, H., Kennedy, M.P., Hasler, M.: Chaos Shift Keying: Modulation and Demodulation of a Chaotic Carrier using Self-synchronizing Chua’s Circuits. IEEE Trans. Circuits Syst. 40, 634–642 (1993)CrossRefGoogle Scholar
  11. 11.
    Parlitz, U., Ergezinger, S.: Robust Communication Based on Chaotic Spreading Sequences. Phys. Lett. A 188(2), 146–150 (1997)CrossRefGoogle Scholar
  12. 12.
    Kocarev, L.j., Halle, K., Eckert, K., Chua, L.O., Parlitz, U.: Experimental Demonstration of Secure Communications via Chaotic Synchronization. Int. J. Bifurcation Chaos Appl. Sci. Eng. 2(2), 709–713 (1992)zbMATHGoogle Scholar
  13. 13.
    Murali, K., Lakshmanan, M.: Transmission of Signals by Synchronization in a Chaotic Van der Pol–Duffing Oscillator. Phys. Rev. E 48, R1624-R1626 (1993)CrossRefGoogle Scholar
  14. 14.
    Wu, C.W., Chua, L.O.: A Simple way to Synchronize Chaotic Systems with Applications to Secure Communication Systems. Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 1619–1627 (1993)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ogorzalek, M.J.: Taming Chaos. I. Synchronization. IEEE Trans. Circuits Syst. 40, 639–699 (1993)Google Scholar
  16. 16.
    Halle, K.S., Wul, C.W., Itoh, M., Chua, L.O.: Spread Spectrum Communication Through Modulation of Chaos. Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 469–477 (1993)zbMATHCrossRefGoogle Scholar
  17. 17.
    Dmitriev, A.S., Panas, A.I., Starkov, S.O.: Experiments on Speech and Music Signals Transmission using Chaos. Int. J. Bifurcation Chaos Appl. Sci. Eng. 5(4), 1249–1254 (1995)zbMATHCrossRefGoogle Scholar
  18. 18.
    Dmitriev, A.S., Panas, A.I., Starkov, S.O., Kuzmin, L.V.: Experiments on RF Band Communications using Chaos. Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, 2511–2527 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Murali, K., Lakshmanan, M.: Efficient Signal Transmission by Synchronization Through Compound Chaotic Signal. Phys. Rev. E 56, 251–255 (1997)CrossRefGoogle Scholar
  20. 20.
    Murali, K., Lakshmanan, M.: Secure Communication using a Compound Signal from Generalized Synchronizable Chaotic Systems. Phys. Lett. A 241, 303–310 (1998)zbMATHCrossRefGoogle Scholar
  21. 21.
    Oppenheim, A.V., Wornell, G.W., Isabelle, S.H., Cuomo, K.M.: Signal Processing in the Context of Chaotic Signals. IEEE Trans., 117–120 (1992)Google Scholar
  22. 22.
    Kocarev, L.J., et al.: Synchronization in Chaotic Systems. Int. J. of Bifur Chaos 2, 709–713 (1992)zbMATHCrossRefGoogle Scholar
  23. 23.
    SJ, L., Alvarez, G., Chen, G.R.: Breaking a Chaos-Based Secure Communication Scheme Designed by an Improved Modulation Method. Chaos Solitons & Fractals 25(1), 109–120 (2005)CrossRefGoogle Scholar
  24. 24.
    Zhou, J., Huang, H.B., Qi, G.X., et al.: Communication with Spatial Periodic Chaos synchronization. Physics Lett. A 335(2-3), 191–196 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kim, C.M., Kye, W.H., Rim, S., et al.: Communication key using delay times in time-Delayed Chaos Synchronization. Physics Lett. A 333(3-4), 235–240 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Makeig, S., Westerfield, M., Jung, T-P., Enghoff, S., Townsend, J., Courchesne, E., Sejnowski, T.J.: Dynamic Brain Sources of Visual Evoked Responses. Science 295, 690–694 (2002)CrossRefGoogle Scholar
  27. 27.
    Stögbauer, H., Kraskov, A., Astakhov, S.A., Grassberger, P.: Least Dependent Component Analysis Based on Mutual Information. Phys. Rev. E 70, 66123 (2004)CrossRefGoogle Scholar
  28. 28.
    Lauro, E.D., Martino, S.D., Falanga, M., Ciaramella, A., Tagliaferri, R.: Complexity of Time Series Associated to Dynamical Systems Inferred from Independent Component Analysis. Physical Review E 72, 46712 (2005)CrossRefGoogle Scholar
  29. 29.
    Khor, L.C., Woo, W.L., Dlay, S.S.: Nonlinear Blind Signal Separation with Intelligent Controlled Learning. IEE Proc.-Vis. Image Signal Process. 152(3), 297–306 (2005)CrossRefGoogle Scholar
  30. 30.
    Fiori, S.: Fixed-Point Neural Independent Component Analysis Algorithms on the Orthogonal Group. Future Generation Computer Systems 22, 430–440 (2006)CrossRefGoogle Scholar
  31. 31.
    de la Rosa a, J.J.G., Puntonet b, C.G., Lloret, I.: An Application of the Independent Component Analysis to Monitor Acoustic Emission Signals Generated by Termite Activity in Wood. Measurement 37, 63–76 (2005)CrossRefGoogle Scholar
  32. 32.
    Bell, A.J., Sejnowski, T.J.: An Information Maximisation Approach to Blind Separation and Blind Deconvolution. Neural Comput. 7(6), 1129–1159 (1995)CrossRefGoogle Scholar
  33. 33.
    Amari, S., Cichocki, A., Yang, H.H.: A New Learning Algorithm for Blind Signal Separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Shih-Lin Lin
    • 1
  • Pi-Cheng Tung
    • 1
  1. 1.The Department of Mechanical Engineering, the National Central University, Chung-Li 320, Email:

Personalised recommendations