Advertisement

Red-Black EDGSOR Iterative Method Using Triangle Element Approximation for 2D Poisson Equations

  • J. Sulaiman
  • M. Othman
  • M. K. Hasan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)

Abstract

This paper discusses the use of the 4 Point-Explicit Decoupled Group (EDG) iterative method together with a weighted parameter, namely 4 Point-EDGSOR. The effectiveness of this method will be investigated to solve two-dimensional Poisson equations by using the half-sweep triangle finite element approximation equation based on the Galerkin scheme. In fact, formulations of the full-sweep and half-sweep triangle finite element approaches are also shown. Then implementation of the 4 Point-EDGSOR was performed by combining the Red-Black (RB) ordering strategy. Some numerical experiments are conducted to show that the 4 Point-EDGSOR-RB method is superior to the existing 4 Point-EDG method.

Keywords

Explicit Decoupled Group Red-Black Ordering Galerkin Scheme Triangle Element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdullah, A.R.: The Four Point Explicit Decoupled Group (EDG) Method: A Fast Poisson Solver. Intern. Journal of Computer Mathematics 38, 61–70 (1991)CrossRefGoogle Scholar
  2. 2.
    Abdullah, A.R., Ali, N.H.M.: A comparative study of parallel strategies for the solution of elliptic pde’s. Parallel Algorithms and Applications 10, 93–103 (1996)Google Scholar
  3. 3.
    Evan, D.J., Yousif, W.F.: The Explicit Block Relaxation method as a grid smoother in the Multigrid V-cycle scheme. Intern. Journal of Computer Mathematics 34, 71–78 (1990)CrossRefGoogle Scholar
  4. 4.
    Fletcher, C.A.J.: The Galerkin method: An introduction. In: Noye, J. (pnyt.). Numerical Simulation of Fluid Motion, pp. 113–170. North-Holland Publishing Company, Amsterdam (1978)Google Scholar
  5. 5.
    Fletcher, C.A.J.: Computational Galerkin method. Springer Series in Computational Physics. Springer, Heidelberg (1984)Google Scholar
  6. 6.
    Ibrahim, A., Abdullah, A.R: Solving the two-dimensional diffusion equation by the four point explicit decoupled group (EDG) iterative method. Intern. Journal of Computer Mathematics 58, 253–256 (1995)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lewis, P.E., Ward, J.P.: The Finite Element Method: Principles and Applications. Addison-Wesley Publishing Company, Reading (1991)zbMATHGoogle Scholar
  8. 8.
    Othman, M., Abdullah, A.R.: The Halfsweeps Multigrid Method As A Fast Multigrid Poisson Solver. Intern. Journal of Computer Mathematics 69, 219–229 (1998)Google Scholar
  9. 9.
    Othman, M., Abdullah, A.R.: An Effcient Multigrid Poisson Solver. Intern. Journal of Computer Mathematics 7, 541–553 (1999)CrossRefGoogle Scholar
  10. 10.
    Othman, M., Abdullah, A.R.: An Efficient Four Points Modified Explicit Group Poisson Solver. Intern. Journal of Computer Mathematics 76, 203–217 (2000)zbMATHCrossRefGoogle Scholar
  11. 11.
    Othman, M., Abdullah, A.R., Evans, D.J.: A Parallel Four Point Modified Explicit Group Iterative Algorithm on Shared Memory Multiprocessors. Parallel Algorithms and Applications 19(1), 1–9 (2004) (On January 01, 2005 this publication was renamed International Journal of Parallel, Emergent and Distributed Systems)zbMATHCrossRefGoogle Scholar
  12. 12.
    Parter, S.V.: Estimates for Multigrid methods based on Red Black Gauss-Seidel smoothers. Numerical Mathematics 52, 701–723 (1998)CrossRefGoogle Scholar
  13. 13.
    Sulaiman, J., Hasan, M.K., Othman, M.: The Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) method for diffusion equations. In: Zhang, J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp. 57–63. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Sulaiman, J., Othman, M., Hasan, M.K.: Quarter-Sweep Iterative Alternating Decomposition Explicit algorithm applied to diffusion equations. Intern. Journal of Computer Mathematics 81, 1559–1565 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Twizell, E.H.: Computational methods for partial differential equations. Ellis Horwood Limited, Chichester (1984)zbMATHGoogle Scholar
  16. 16.
    Vichnevetsky, R.: Computer Methods for Partial Differential Equations, vol. I. Prentice-Hall, New Jersey (1981)Google Scholar
  17. 17.
    Yousif, W.S., Evans, D.J.: Explicit De-coupled Group iterative methods and their implementations. Parallel Algorithms and Applications 7, 53–71 (1995)zbMATHGoogle Scholar
  18. 18.
    Zhang, J.: Acceleration of Five Points Red Black Gauss-Seidel in Multigrid for Poisson Equations. Applied Mathematics and Computation 80(1), 71–78 (1996)CrossRefGoogle Scholar
  19. 19.
    Zienkiewicz, O.C.: Why finite elements? In: Gallagher, R.H., Oden, J.T., Taylor, C., Zienkiewicz, O.C. (eds.) Finite Elements In Fluids-Volume, vol. 1, pp. 1–23. John Wiley & Sons, Chichester (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. Sulaiman
    • 1
  • M. Othman
    • 2
  • M. K. Hasan
    • 3
  1. 1.School of Science and Technology, Universiti Malaysia Sabah, Locked Bag 2073, 88999 Kota Kinabalu, SabahMalaysia
  2. 2.Faculty of Computer Science and Info. Tech., Universiti Putra Malaysia, 43400 Serdang, Selangor D.E. 
  3. 3.Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. 

Personalised recommendations