Two-Stage Interval Krawczyk-Schwarz Methods with Applications to Nonlinear Parabolic PDE

  • Hartmut Schwandt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)


By using interval techniques, it is possible to obtain global convergence properties and verified enclosures in the numerical solution of several classes of nonlinear systems of equations. In the present paper, we introduce Newton-like interval methods of the so-called Krawczyk-type for systems arizing from discretizations of almost linear parabolic problems. Parallelism is introduced by domain decomposition and an adaptation of the Schwarz Alternating Procedure. Numerical results from a Sun Opteron cluster are included.


almost linear parabolic problems enclosure methods nonlinear systems of equations Newton-like methods Krawczyk operator Schwarz Alternating Procedure domain decomposition parallel methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)zbMATHGoogle Scholar
  2. 2.
    Frommer, A., Schwandt, H.: A Unified Representation and Theory of Algebraic Additive Schwarz and Multisplitting Methods. SIAM J. Matrix Anal. Appl. 15, 893–912 (1997)CrossRefGoogle Scholar
  3. 3.
    Krawczyk, R.: Newton–Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 187–201 (1969)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)zbMATHGoogle Scholar
  5. 5.
    Rodrigue, G.: Inner/outer iterative methods and numerical Schwarz algorithms. Parallel Comp. 2, 205–218 (1985)CrossRefGoogle Scholar
  6. 6.
    Rodrigue, G., Shan, K.L., Yu-Hui, L.: Convergence and comparison analysis of some numerical Schwarz methods. Numer. Math. 56, 123–138 (1989)CrossRefGoogle Scholar
  7. 7.
    Schwandt, H.: Krawczyk-like Algorithms for the Solution of Systems of Nonlinear Equations. SIAM J. Num. Anal. 22, 792–810 (1985)zbMATHCrossRefGoogle Scholar
  8. 8.
    Schwandt, H.: The Solution of Nonlinear Elliptic Dirichlet Problems on Rectangles by Almost Globally Convergent Interval Methods. SIAM J. Sc. St. Comp. 6, 617–638 (1985)zbMATHCrossRefGoogle Scholar
  9. 9.
    Varga, R.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hartmut Schwandt
    • 1
  1. 1.Technische Universität Berlin, Fakultät II, Institut für Mathematik, MA 6-4, D-10623 BerlinGermany

Personalised recommendations