Advertisement

Non-linear Least Squares Features Transformation for Improving the Performance of Probabilistic Neural Networks in Classifying Human Brain Tumors on MRI

  • Pantelis Georgiadis
  • Dionisis Cavouras
  • Ioannis Kalatzis
  • Antonis Daskalakis
  • George Kagadis
  • Koralia Sifaki
  • Menelaos Malamas
  • George Nikiforidis
  • Ekaterini Solomou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)

Abstract

The aim of the present study was to design, implement, and evaluate a software system for discriminating between metastases, meningiomas, and gliomas on MRI. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a second degree least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 75 T1-weighted post-contrast MR images (24 metastases, 21 meningiomas, and 30 gliomas). Classification performance was evaluated employing the leave-one-out method and for all possible textural feature combinations. LSFT enhanced the performance of the PNN, achieving 93.33% in discriminating between the three major types of human brain tumors, against 89.33% scored by the PNN alone. Best feature combination for achieving highest discrimination power included the mean value and entropy, which reflect specific properties of texture, i.e. signal strength and inhomogeneity. LSFT improved PNN performance, increased class separability, and resulted in dimensionality reduction.

Keywords

Textural Feature Magn Reson Image Probabilistic Neural Network Human Brain Tumor Neural Network Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shen, S., Sandham, W., Granat, M., Sterr, A.: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Inf. Technol. Biomed. 9, 459–467 (2005)CrossRefGoogle Scholar
  2. 2.
    Soltanian-Zadeh, H., Peck, D.J., Windham, J.P., Mikkelsen, T.: Brain tumor segmentation and characterization by pattern analysis of multispectral NMR images. NMR Biomed. 11, 201–208 (1998)CrossRefGoogle Scholar
  3. 3.
    Lerski, R.A., Straughan, K., Schad, L.R., Boyce, D., Bluml, S., Zuna, I.: MR image texture analysis–an approach to tissue characterization. Magn. Reson. Imaging 11, 873–887 (1993)CrossRefGoogle Scholar
  4. 4.
    Schad, L.R., Bluml, S., Zuna, I.: MR tissue characterization of intracranial tumors by means of texture analysis. Magn. Reson. Imaging 11, 889–896 (1993)CrossRefGoogle Scholar
  5. 5.
    Herlidou-Meme, S., Constans, J.M., Carsin, B., Olivie, D., Eliat, P.A., Nadal-Desbarats, L., Gondry, C., Le Rumeur, E., Idy-Peretti, I., de Certaines, J.D.: MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn. Reson. Imaging 21, 989–993 (2003)CrossRefGoogle Scholar
  6. 6.
    Cho, Y.-D., Choi, G.-H., Lee, S.-P., Kim, J.-K.: 1H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors. Magnetic Resonance Imaging 21, 663–672 (2003)CrossRefGoogle Scholar
  7. 7.
    Tate, A.R., Majos, C., Moreno, A., Howe, F.A., Griffiths, J.R., Arus, C.: Automated classification of short echo time in in vivo 1H brain tumor spectra: A multicenter study. Magn Reson Med. 49, 29–36 (2003)CrossRefGoogle Scholar
  8. 8.
    Devos, A., Lukas, L., Suykens, J.A., Vanhamme, L., Tate, A.R., Howe, F.A., Majos, C., Moreno-Torres, A., van der Graaf, M., Arus, C., Van Huffel, S.: Classification of brain tumours using short echo time 1H MR spectra. J. Magn. Reson. 170, 164–175 (2004)CrossRefGoogle Scholar
  9. 9.
    Lukas, L., Devos, A., Suykens, J.A., Vanhamme, L., Howe, F.A., Majos, C., Moreno-Torres, A., Van der Graaf, M., Tate, A.R., Arus, C., Van Huffel, S.: Brain tumor classification based on long echo proton MRS signals. Artif Intell Med. 31, 73–89 (2004)CrossRefGoogle Scholar
  10. 10.
    Menze, B.H., Lichy, M.P., Bachert, P., Kelm, B.M., Schlemmer, H.P., Hamprecht, F.A.: Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed. 19, 599–609 (2006)CrossRefGoogle Scholar
  11. 11.
    Simonetti, A.W., Melssen, W.J.: Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR Biomed. 18, 34–43 (2005)CrossRefGoogle Scholar
  12. 12.
    Devos, A., Simonetti, A.W., van der Graaf, M., Lukas, L., Suykens, J.A., Vanhamme, L., Buydens, L.M., Heerschap, A., Van Huffel, S.: The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J. Magn. Reson. 173, 218–228 (2005)CrossRefGoogle Scholar
  13. 13.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3, 610–621 (1973)Google Scholar
  14. 14.
    Galloway, M.M.: Texture analysis using grey level run lengths. Comp. Graph. and Image Proc. 4, 172–179 (1975)Google Scholar
  15. 15.
    Theodoridis, S., Koutroumbas, K.: Pattern recognition. Academic Press, New York (1999)Google Scholar
  16. 16.
    Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)CrossRefGoogle Scholar
  17. 17.
    Ahmed, N., Rao, R.: Orthogonal transforms for digital signal processing. Springer, Heidelberg (1975)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pantelis Georgiadis
    • 1
  • Dionisis Cavouras
    • 2
  • Ioannis Kalatzis
    • 2
  • Antonis Daskalakis
    • 1
  • George Kagadis
    • 1
  • Koralia Sifaki
    • 3
  • Menelaos Malamas
    • 3
  • George Nikiforidis
    • 1
  • Ekaterini Solomou
    • 4
  1. 1.Medical Image Processing and Analysis Group (M.I.P.A.), Laboratory of Medical Physics, School of Medicine, University of Patras, Rio, GR-26500Greece
  2. 2.Medical Signal and Image Processing Lab, Department of Medical Instruments Technology, Technological Educational Institute of Athens, Ag. Spyridonos Street, Aigaleo, 122 10, AthensGreece
  3. 3.251 General Hellenic Airforce Hospital, MRI Unit, Katehaki, Athens, GR-11525Greece
  4. 4.Department of Radiology, School of Medicine, University of Patras, Rio, GR-26503Greece

Personalised recommendations