Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming

  • I. Valuev
  • A. Deinega
  • A. Knizhnik
  • B. Potapkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)


In the present work we propose a strategy for developing reusable multi-model simulation library for solving Finite-Difference Time-Domain (FDTD) problem for Maxwell’s equations. The described EMTL (Electromagnetic Template Library) architecture is based on the selection of a small number of primitive low-level physical and numerical concepts which are used as parameters and building blocks for higher-level algorithms and structures. In the present work we demonstrate that a large set of FDTD techniques may be formulated using the same primitives. The basic concept for this representation is a discretized field contour entering the integral form of Maxwell’s equations. We also describe the proposed architecture in terms of FDTD C++ template class library and discuss the performance and the usage of this library for various FDTD-based simulations.


Scatter Field Input Point Absorb Boundary Condition FDTD Method FDTD Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic crystals: molding the flow of light. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  2. 2.
    Johnson, S.G., Joannopoulos, J.D.: Acta Materialia 51, 582 (2003)Google Scholar
  3. 3.
    Taflove, A., Hagness, S.H.: Computational Electrodynamics: The Finite Difference Time-Domain Method. Artech House, Boston (2000)zbMATHGoogle Scholar
  4. 4.
    Jurgens, T.G., Taflove, A., Umashankar, K.R., Moore, T.G.: IEEE Trans. Antennas and Propagation 40, 357 (1992)Google Scholar
  5. 5.
    Dey, S., Mittra, R.: IEEE Microwave and Guided Wave Lett.  7, 273 (1997)Google Scholar
  6. 6.
    MIT Electromagnetic Equation Propagation,
  7. 7.
    Remcom’s full wave FDTD solver,
  8. 8.
    RM Associates’ conformal FDTD code,
  9. 9.
    Farjadpour, A., Roundy, D., Rodriguez, A., et al.: Optics Letters.  31, 2972 (2006)Google Scholar
  10. 10.
    Yee, K.S.: IEEE Trans. Antennas and Propagation 14, 302 (1966)Google Scholar
  11. 11.
    Dobbler, W., Haugen, N.E.L., Yousef, T.A., Brandenburg, A.: Phys Rev E 68 (2003) 026304,
  12. 12.
    Roberts, S.: Phys Rev.  114, 104 (1959)Google Scholar
  13. 13.
    Joint Supercomputer Center of the Russian Academy of Scienece,
  14. 14.
    Computational cluster of the Department of Molecular and Biological Physics, MIPT,
  15. 15.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley-Interscience, New York (1983)Google Scholar
  16. 16.
    Umashankar, K.R., Taflove, A.: IEEE Trans. Electromagnetic Compatibility 24, 397 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • I. Valuev
    • 1
  • A. Deinega
    • 2
  • A. Knizhnik
    • 2
  • B. Potapkin
    • 2
  1. 1.Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow, 125412Russia
  2. 2.KINTECH Kinetic Technologies, Kurchatov Sq. 1, Moscow, 123182, Email: info@kintech.ruRussia

Personalised recommendations