Skip to main content

Towards a Unified Theory of Rhythmic and Discrete Movements — Behavioral, Modeling and Imaging Results

  • Chapter
Coordination: Neural, Behavioral and Social Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Since the seminal paper on phase transitions in bimanual rhythmic movements, research from the dynamical systems perspective has given primacy to rhythmic coordination. While rhythmic movements are a ubiquitous and fundamental expression in biological behavior, non-rhythmic or discrete movements are of similar importance. In fact, rhythmic and discrete movements are commonly intertwined in complex actions. This review traces our strategy of extending a dynamic systems account from rhythmic to non-rhythmic behavior. Behavioral and modeling work on uni- and bimanual, single- and multijoint coordination increasingly investigated more complex movement tasks consisting of rhythmic and discrete elements. The modeling work suggested a three-tiered architecture consisting of a biomechanical, internal and parameter level with different responsibilities for different components of movement generation. A core question raised in the modeling is what are the fundamental units and principles that are tuned to make up complex behavior. Are rhythmic pattern generators the primitives for generating both rhythmic and non-rhythmic behaviors? Alternatively, are discrete pattern generators fundamental, or are there two primitives of action? fMRI experiments compared brain activation in continuously rhythmic and discrete movements. Significantly more activation in discrete movements suggested that discrete movements have higher control demands and may be distinct primitives, different from rhythmic movements. This result corresponds to the modeling work that highlighted that discrete movements require more parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamovich SV, Levin MF, Feldman AG (1994) Merging different motor patterns: coordination between rhythmical and discrete single-joint movements. Exp Brain Res 99(2):325–337

    Article  Google Scholar 

  2. Beek PJ (1989) Juggling dynamics. Unpublished Doctoral Dissertation, Free University Press, Amsterdam

    Google Scholar 

  3. Bernstein N (1967) The coordination and regulation of movement. Pergamon Press, London

    Google Scholar 

  4. Bizzi E, Mussa-Ivaldi SA, Giszter SF (1991) Computations underlying the execution of movement: a biological perspective. Science 253:287–291

    Article  Google Scholar 

  5. Buchanan JJ, Park JH, Shea CH (2006) Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Experimental Brain Research epub ahead of print.

    Google Scholar 

  6. Bullock D, Grossberg S (1991) Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Hum Movement Sci 10:3–53

    Article  Google Scholar 

  7. d’Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci 102(8):3076–3081

    Article  Google Scholar 

  8. de Rugy A, Sternad D (2003) Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation against oscillatory movements. Brain Res 994:160–174

    Article  Google Scholar 

  9. Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Article  Google Scholar 

  10. Fitts PM, Peterson JR (1964) Information capacity of discrete motor responses. J Exp Psychol 67:103–112

    Article  Google Scholar 

  11. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    Google Scholar 

  12. Fuchs A, Jirsa VK, Kelso JAS (2000a) Issues in the coordination of human brain activity and motor behavior. Neuroimage 11(5):375–377

    Article  Google Scholar 

  13. Fuchs A, Jirsa VK, Kelso JAS (2000b) Theory of the relation between human brain activity (MEG) and hand movements. Neouroimage 11(5):359–369

    Article  Google Scholar 

  14. Fuchs A, Kelso JAS, Haken H (1992) Phase transitions in the human brain: spatial mode analysis. Int J Bifurcat Chaos 2:917–939

    Article  MATH  Google Scholar 

  15. Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JAS (2000) Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12(l):71–84

    Article  Google Scholar 

  16. Georgopoulos AP (1991) Higher order motor control. Annu Rev Neurosci 14:361–377

    Article  Google Scholar 

  17. Georgopoulos AP, Kettner RE, Schwartz AB (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  Google Scholar 

  18. Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13(2):467

    Google Scholar 

  19. Goodman D, Kelso JAS (1983) Exploring the functional significance of physiological tremor: a biospectroscopic approach. Exp Brain Res 49:419–431

    Article  Google Scholar 

  20. Guiard Y (1993) On Fitts and Hooke’s law: simple harmonic movements in upper-limb cyclical aiming. Acta Psychologica 82:139–159

    Article  Google Scholar 

  21. Haken H (1983) Synergetics. An introduction. Springer, Berlin

    MATH  Google Scholar 

  22. Haken H (1987) Advanced synergetics. Springer, Berlin

    Google Scholar 

  23. Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transition in human hand movements. Biol Cybern 51:347–356

    Article  MATH  MathSciNet  Google Scholar 

  24. Hart CB, Giszter SF (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci 24(22):5269–5282

    Article  Google Scholar 

  25. Hogan N, Sternad D (in press) On rhythmic and discrete movements: Reflections, definitions and implications for motor control. Exp Brain Res 181:13–30

    Google Scholar 

  26. Iberall AS (1972) Toward a general science of viable systems. McGraw-Hill, New York

    Google Scholar 

  27. Iberall AS, Soodak H (1987) A physics of complex systems. In: Yates FE (ed) Self-organizing systems: the emergence of order. Plenum Press, New York, pp. 158–173

    Google Scholar 

  28. Jirsa VK, Fuchs A, Kelso JAS (1998) Connecting cortical and behavioral dynamics: bimanual coordination. Neural Comput 10(8):2019–2045

    Article  Google Scholar 

  29. Kay BA, Kelso JAS, Saltzman EL, Schöner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol Hum Percept Perform 13(2):178–192

    Article  Google Scholar 

  30. Kelso JAS (1981) On the oscillatory basis of movement. Bull Psychonomic Soc 18(63):49–70

    Google Scholar 

  31. Kelso JAS(1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol Regul Integrative and Comparative Physiology 15:R1000–R1004

    Google Scholar 

  32. Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge, MA

    Google Scholar 

  33. Kelso JAS, Fink PW, DeLaplain CR, Carson RG (2001) Haptic information stabilizes and destabilizes coordination dynamics. Proc Biol Sci 268(1472):1207–1213

    Article  Google Scholar 

  34. Kelso JAS, Southard DL, Goodman D (1979a) On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform 5:229–238

    Article  Google Scholar 

  35. Kelso JAS, Southard DL, Goodman D (1979b) On the nature of human interlimb coordination. Science 203(4384):1029–1031

    Article  Google Scholar 

  36. Kugler PN, Kelso JAS, Turvey MT (1980) On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In: Stelmach GE, Requin J(eds.) Tutorials in motor behavior. North Holland, New York, pp. 3–47

    Google Scholar 

  37. Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Erlbaum, Hillsdale, NJ

    Google Scholar 

  38. Kuhn T (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  39. Kurtzer IL, Herter TM, Scott SH (2006) Nonuniform distribution of reach-related and torque-related activity in upper arm muscles and neurons of primary motor cortex. J Neurophysiol 96(6):3220–3230

    Article  Google Scholar 

  40. Latash ML (1993) Control of human movement. Human Kinetics Publisher, Champaign, IL

    Google Scholar 

  41. Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptations. Biol Cybern 52:367–376

    Article  MATH  MathSciNet  Google Scholar 

  42. Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm generators. Biol Cybern 56:345–353

    Article  Google Scholar 

  43. Mayville JM, Fuchs A, Ding M, Cheyne D, Deecke L, Kelso JAS (2001) Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks. Hum Brain Mapp 14(2):65–80

    Article  Google Scholar 

  44. Miall RC, Ivry RB (2004) Moving to a different beat. Nat Neurosci 7(10): 1025–1026

    Article  Google Scholar 

  45. Naselaris T, Merchant H, Amirikian B, Georgopoulos AP (2006a) Large-scale organization of preferred directions in the motor cortex I: motor cortical hyperacuity for forward reaching. J Neurosci 96(6):3231–3236

    Google Scholar 

  46. Naselaris T, Merchant H, Amirikian B, Georgopoulos AP (2006b) Large-scale organization of preferred directions in the motor cortex II: Analysis of local distributions. J Neurophysiol 96(6):3231–3236

    Article  Google Scholar 

  47. Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are control by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81:1045–1056

    Google Scholar 

  48. Saltzman EL, Kelso JAS (1987) Skilled actions: a task-dynamic approach. Psychol Rev 94(I):84–106

    Article  Google Scholar 

  49. Saltzman EL, Munhall KG (1992) Skill acquisition and development: the roles of state-, parameter-, and graph-dynamics. J Motor Behav 24(l):84–106

    Article  Google Scholar 

  50. Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7(10):1136–1143

    Article  Google Scholar 

  51. Schneider K, Zernicke RF, Schmidt RA, Hart TJ (1987) Intersegmental dynamics during the learning of a rapid arm movement. J Biomech 20:816

    Article  Google Scholar 

  52. Schöner G (1990) A dynamic theory of coordination of discrete movement. Biol Cybern 63:257–270

    Article  Google Scholar 

  53. Shadmehr R, Brashers-Krug T, Mussa-Ivaldi FA (1995) Interference in learning internal models of inverse dynamics in humans. In: Tesauro G, Touretzky DS Leen KT (eds.) Advances in neural information processing systems 7, Morgan Kaufmann, San Mateo, CA, pp. 1117–1124

    Google Scholar 

  54. Shadmehr R, Wise SP (2005) Computational neurobiology of reaching and pointing: a foundation for motor learning. MIT Press, Cambridge, MA

    Google Scholar 

  55. Smits-Engelman BCM, Van Galen GP, Duysens J (2002) The breakdown of Fitts’ law in rapid, reciprocal aiming movements. Exp Brain Res 145:222–230

    Article  Google Scholar 

  56. Spencer RM, Ivry RB, Zelaznik HN (2005) Role of cerebellum in movements: control of timing or movement transitions? Exp Brain Res 161(3):383–396

    Article  Google Scholar 

  57. Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300(5624):1437–1439

    Article  Google Scholar 

  58. Staude G, Dengler R, Wolf W (2002) The discontinuous nature of motor execution II. Merging discrete and rhythmic movements in a single-joint system — the phase entrainment effect. Biol Cybern 86(6):427–443

    Article  MATH  Google Scholar 

  59. Sternad D, Dean WJ (2003) Rhythmic and discrete elements in multijoint co-ordination. Brain Res 989:151–172

    Article  Google Scholar 

  60. Sternad D, Dean WJ, Schaal S (2000) Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum Movement Sci 19:627–665

    Article  Google Scholar 

  61. Sternad D, de Rugy A, Pataky T, Dean WJ (2002) Interactions of discrete and rhythmic movements over a wide range of periods. Exp Brain Res 147:162–174

    Article  Google Scholar 

  62. Sternad D, Saltzman EL, Turvey MT (1998) Interlimb coordination in a simple serial behavior: a task dynamic approach. Hum Movement Sci 17:393–433

    Article  Google Scholar 

  63. Sternad D, Turvey MT (1995) Control parameters, equilibria, and coordination dynamics. Behav Brain Sci 18:780

    Article  Google Scholar 

  64. Sternad D, Wei K, Diedrichsen J, Ivry RB (2006) Intermanual interactions during initiation and production of rhythmic and discrete movements in individuals lacking a corpus callosum. Exp Brain Res 76:559–574

    Google Scholar 

  65. Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93(l):609–613

    Google Scholar 

  66. Travis LE (1929) The relation of voluntary movement to tremors. J Exp Psychol 12:515–524

    Article  Google Scholar 

  67. Tuller B, Kelso JAS (1989) Environmentally-elicited pattern of movement co-ordination in normal and split-brain subjects. Exp Brain Res 75:306–316

    Article  Google Scholar 

  68. Turvey MT (1990) Coordination. Am Psychol 45:938–953

    Article  Google Scholar 

  69. Turvey MT, Carello C (1995) Dynamics of Bernstein’s level of synergies. In: Latash M, Turvey MT (eds.) On dexterity and its development. Erlbaum, Hillsdale, NJ, pp. 339–376

    Google Scholar 

  70. van Mourik A, Beek PJ (2004) Discrete and cyclical movements: unified dynamics or separate control? Acta Psychol 117(2):121–138

    Article  Google Scholar 

  71. Wei K, Wertman G, Sternad D (2003) Discrete and rhythmic components in bimanual actions. Motor Control 7(2):134–155

    Google Scholar 

  72. Wierzbicka MM, Staude G, Wolf W, Dengler R (1993) Relationship between tremor and the onset of rapid voluntary contraction in Parkinson disease. J Neurol Neurosur Psychia 56:782–787

    Article  Google Scholar 

  73. Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  Google Scholar 

  74. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329

    Article  Google Scholar 

  75. Wolpert DM, Miall RC, Kawato, M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347

    Article  Google Scholar 

  76. Yu H (2005) Rhythmic timing in human movements: behavioral data, a model and fMRI studies. Pennsylvania State University, University Park, PA

    Google Scholar 

  77. Yu H, Vaillancourt DE, Corcos D, Sternad D (2007) Hyper-and hypo-activation of cortical and subcortical structures during rhythmic movements in Parkinson’s disease. Neuroimage 35:222–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sternad, D. (2008). Towards a Unified Theory of Rhythmic and Discrete Movements — Behavioral, Modeling and Imaging Results. In: Fuchs, A., Jirsa, V.K. (eds) Coordination: Neural, Behavioral and Social Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74479-5_6

Download citation

Publish with us

Policies and ethics