Skip to main content

Efficient Colored Point Set Matching Under Noise

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4705))

Abstract

Let \(\mathcal{A}\) and \(\mathcal{B}\) be two colored point sets in \(\mathcal{R}^2\), with \(|\mathcal{A}| \le |\mathcal{B}|\). We propose a process for determining matches, in terms of the bottleneck distance, between \(\mathcal{A}\) and subsets of \(\mathcal{B}\) under color preserving rigid motion, assuming that the position of all colored points in both sets contains a certain amount of ”noise”. The process consists of two main stages: a lossless filtering algorithm and a matching algorithm. The first algorithm determines a number of candidate zones which are regions that contain a subset \(\mathcal{S}\) of \(\mathcal{B}\) such that \(\mathcal{A}\) may match one or more subsets \(\mathcal{B}'\) of \(\mathcal{S}\). We use a compressed quadtree to have easy access to the subsets of \(\mathcal{B}\) related to candidate zones and store geometric information that is used by the lossless filtering algorithm in each quadtree node. The second algorithm solves the colored point set matching problem: we generate all, up to a certain equivalence, possible motions that bring \(\mathcal{A}\) close to some subset \(\mathcal{B'}\) of every \(\mathcal{S}\) and seek for a matching between sets \(\mathcal{A}\) and \(\mathcal{B}'\). To detect these possible matchings we use a bipartite matching algorithm that uses Skip Quadtrees for neighborhood queries. We have implemented the proposed algorithms and report results that show the efficiency of our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Kanaya, K., Ohyama, A., Fujiyama, A.: Point Matching Under Non-Uniform Distortions. Discrete Applied Mathematics, special issue: computational biology series IV, 5-21 (2003)

    Google Scholar 

  2. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity and symmetries of geometric objects. Discrete & Computational Geometry 3, 237–256 (1988)

    Article  MATH  Google Scholar 

  3. Choi, V., Goyal, N.: A Combinatorial Shape Matching Algorithm for Rigid Protein Docking. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 285–296. Springer, Heidelberg (2004)

    Google Scholar 

  4. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in Bottleneck Matching and related problems. Algorithmica 31, 1–28 (2001)

    Article  MATH  Google Scholar 

  5. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: a simple dynamic data structure for multidimensional data. In: 21st ACM Symp. on Comp. Geom., pp. 296–305. ACM Press, New York (2005)

    Google Scholar 

  6. Finn, P., Kavraki, L.E., Latombe, J.C., Motwani, R., Shelton, C., Venkatasubramanian, S., Yao, A.: Rapid: Randomized pharmacophore identification for drug design. In: Proc. 13th ACM Symp. Comp. Geom., pp. 324–333. ACM Press, New York (1997)

    Google Scholar 

  7. Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Computational Geometry: Theory and Applications 4(3), 137–156 (1994)

    MATH  Google Scholar 

  8. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

    Article  MATH  Google Scholar 

  9. Hunt, K.H.: Kinematic Geometry of Mechanisms, ch. 4,7. Oxford University Press, Oxford (1978)

    MATH  Google Scholar 

  10. Indyk, P., Venkatasubramanian, S.: Approximate congruence in nearly linear time. Comput. Geom. 24(2), 115–128 (2003)

    Article  MATH  Google Scholar 

  11. Weber, G., Knipping, L., Alt, H.: An Application of Point Pattern Matching in Astronautics. J. Symbolic Computation 11, 1–20 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diez, Y., Sellarès, J.A. (2007). Efficient Colored Point Set Matching Under Noise. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74472-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74472-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74468-9

  • Online ISBN: 978-3-540-74472-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics