Skip to main content

A Context-Aware Workflow System for Dynamic Service Adaptation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4705))

Abstract

The workflow model has been successively applied to traditional computing environments such as business processes and distributed computing in order to perform service composition, flow management, parallel execution, and time-driven services. Recently, there have been many studies to adopt the workflow model into ubiquitous computing environments for context-aware and autonomous services. A service in ubiquitous computing environments must be executed according to a user’s situation information, which is generated dynamically from sensors. Such existing workflow systems as FollowMe and uFlow support context-aware services through workflow models. However, when a user’s situation is dynamically changed, the systems don’t have a method to immediately adopt the change into an already on-going service workflow. In this paper, we propose a context-aware workflow system, which can apply changes of user’s service demand or situation information into an on-going workflow without breaking its operation. The suggested workflow system can re-apply the new services into an initial workflow scenario without interrupting or deleting workflow service. To do this, the proposed system represents contexts described in a workflow as an RDF-based DItree (Document Instance tree). The system uses the tree information to recognize an exact position to be changed in the on-going workflow for the user’s situation changes, and to reconstruct only the position under the influence of the changes in the DItree. Therefore, the suggested system can quickly and efficiently apply a change of the user’s new situation into an on-going workflow without much loss of time and space, and can offer a context-aware service continuously according to a new workflow.

This work was supported by the Seoul R&BD Program(10581cooperateOrg93112), funded by Seoul Metropolitan Government.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Workflow Management Coalition: The Workflow Handbook 2002, Future Strategies Inc. and Lighthouse Point, FL, USA (2002)

    Google Scholar 

  2. Dey, A.k.: Understanding and Using Contex. Personal and Ubiquitous Computing 5(1), 69–78 (2001)

    Google Scholar 

  3. Han, J., Cho, Y., Choi, J.: Context-Aware Workflow Language based on Web Services for Ubiquitous Computing. In: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) Computational Science and Its Applications – ICCSA 2005. LNCS, vol. 3481, pp. 1008–1017. Springer, Heidelberg (2005)

    Google Scholar 

  4. Ranganathan, A., McFaddin, S.: Using Workflows to Coordinate Web Services in Pervasive Computing Environments. In: ICWS’04. Proceedings of the IEEE International Conference on Web Services, pp. 189–197. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  5. Andrews, T., Curbera, F., Goland, Y.: Business Process Execution Language for Web Services, BEA Systems, Microsoft Corp., IBM Corp., Version 1.1 (2003)

    Google Scholar 

  6. Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM (2001)

    Google Scholar 

  7. Thatte, S.: XLANG Web Services for Business Process Design, Microsoft Corp. (2001)

    Google Scholar 

  8. Cost, R.S., Finin, T.: ITtalks: A Case Study in the Semantic Web and DAML+OIL, University of Maryland, Baltimore County, pp. 1094–7167. IEEE, Los Alamitos (2002)

    Google Scholar 

  9. W3C: RDF/XML Syntax Specification, W3C Recommendation (2004)

    Google Scholar 

  10. Vieira, P., Rito-Silva, A.: Adaptive Workflow Management in WorkSCo. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 640–645. Springer, Heidelberg (2005)

    Google Scholar 

  11. Li, J., Bu, Y., Chen, S., Tao, X., Lu, J.: FollowMe: On Research of Pluggable Infrastructure for Context-Awareness. In: AINA’06. 20th International Conference on Advanced Information Networking and Applications, vol. 1, pp. 199–204 (2006)

    Google Scholar 

  12. Ghezzi, C., Mandrioli, D.: Incremental Parsing. ACM Transactions on Programming Languages and Systems 1(1), 58–70 (1979)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, J., Cho, Y., Shin, K., Choi, J. (2007). A Context-Aware Workflow System for Dynamic Service Adaptation. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74472-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74472-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74468-9

  • Online ISBN: 978-3-540-74472-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics