Skip to main content

Extracción de características en señales MER para el reconocimiento de zonas cerebrales

  • Conference paper
  • 53 Accesses

Part of the IFMBE Proceedings book series (IFMBE,volume 18)

Abstract

We present a methodology for dynamic feature extraction by means of adaptive filter banks in case of automatic identification of brain zone using micro electrode recording. Proposed biorthogonal filter banks changes according energy. Besides, adaptive lifting schemes, which allow filter order change, are used for filter bank implementation. Lifting schemes are introduced because lower computational complexity and less processing time. As features, both maximum value and variance of different wavelet decomposition levels are selected for brain zone classification. As a result, classification performance level of 98.5% value, estimated by means of bayesian classifier with Mahalanobis distance, is reached which is better than in 5% in comparison to those obtained figures for filter banks but having fixed parameters.

Palabras claves

  • adaptive filter banks
  • Teager algorithm
  • brain zone

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-74471-9_6
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   469.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-74471-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   599.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referencias

  1. G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley, MA, USA: Wellesley-Cambridge Press, 1996.

    Google Scholar 

  2. I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” Journal Of Fourier Analysis And Applications, vol. 4, pp. 247–269, 1998.

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. H. Heijmans, B. Pesquet-Popescu, and G. Piella, “Building nonredundant adaptive wavelets by update lifting,” Applied and Computational Analysis, vol. 18, pp. 252–281, 2005.

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. G. Piella and H. Heijmans, “Adaptive lifting schemes with perfect reconstruction,” IEEE Trans. Signal Processing, vol. 50, no. 7, pp. 2204–2211, Julio 2002.

    CrossRef  Google Scholar 

  5. A. Jensen and A. Cour-Harbo, Riples in Mathematics: The discrete wavelet transform. Springer, 2001.

    Google Scholar 

  6. G. Piella and B. Pesquet-Popescu, “Adaptive wavelet decompositions driven by a weighted norm of the gradient,” in Proc. 3rd IEEE Benelux Signal Processing Symposium (SPS-2002), Belgium, 2002.

    Google Scholar 

  7. G. Piella and B. Pesquet-Popescu, “Content adaptive multiresolution analysis,” in Proceedings of Acivs 2004 (Advanced Concepts for Intelligent Vision Systems), Belgium, 2004.

    Google Scholar 

  8. R. L. Claypoole, R. G. Baraniuk, and R. D. Nowak, “Lifting constructions of non-linear wavelet transforms,” IEEE transactions on image processing, vol. 12(12), pp. 1449–1459, 2003.

    CrossRef  MathSciNet  Google Scholar 

  9. J. Kaiser, “On a simple algorithm to calculate the energy of a signal,” Proc. IEEE ICASSP, Albuquerque, vol. 1, pp. 381–384, 1990.

    Google Scholar 

  10. R. A. Santiago, “Spike source identification,” IEEE, Diciembre 2002.

    Google Scholar 

  11. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.

    Google Scholar 

  12. Q. Fu, M. Clements, and K. Mewes, “Neural Cell Type Recognition Between Globus Pallidus Externus and Globus Pallidus Internus By Gaussian Mixture Modeling,” vol. 1, 2005, pp. 53–56.

    Google Scholar 

  13. S. Cao, “Spike train characterization and decoding for neural prosthetic devices,” California Institute Of Technology, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giraldo, E., Orozco, A., Castellanos, G. (2007). Extracción de características en señales MER para el reconocimiento de zonas cerebrales. In: Müller-Karger, C., Wong, S., La Cruz, A. (eds) IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health. IFMBE Proceedings, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74471-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74471-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74470-2

  • Online ISBN: 978-3-540-74471-9

  • eBook Packages: EngineeringEngineering (R0)