Advertisement

Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not Optimal

  • Chong Sun
  • Yan Sheng Lu
  • Chong Zhou
  • Jun Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4653)

Abstract

Histogram and Wavelet synopses provide useful tools in query optimization and approximate query answering. Traditional wavelet synopsis construction algorithms treat the construction algorithms as the wavelet coefficients selection problem which is called Coefficient Thresholding. However, all these algorithms just focus on the selection of best wavelet coefficients but deal with the unselected ones naively (just setting them to zero). A key problem is whether it can achieve the optimum of error when the unselected ones are set to one single value: zero. In this paper, we consider a novel Wavelet-based Synopsis construction for the known L2 error measure which can handle the unselected wavelet coefficients effectively. We provide a comprehensive theoretical analysis and demonstrate the effectiveness of these algorithms in providing more optimal error significantly through synthetic data sets.

Keywords

query optimization data reduction wavelet synopsis error measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garofalakis, M.N., Kumar, A.: Wavelet synopses for general error metrics. ACM Trans. Database Syst. 30(4), 888–928 (2005)CrossRefGoogle Scholar
  2. 2.
    Garofalakis, M.N., Gibbons, P.B.: Probabilistic wavelet synopses. ACM Trans. Database Syst. 29, 43–90 (2004)CrossRefGoogle Scholar
  3. 3.
    Garofalakis, M.N., Gibbons, P.B.: Wavelet synopses with error guarantees. In: SIGMOD Conference, pp. 476–487 (2002)Google Scholar
  4. 4.
    Karras, P., Mamoulis, N.: One-Pass Wavelet Synopses for Maximum-Error Metrics. In: VLDB 2005, pp. 421–432 (2005)Google Scholar
  5. 5.
    Muthukrishnan, S.: Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 285–296. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Blatter, C.: Wavelets: A Primer. A K Peters (1998)Google Scholar
  7. 7.
    Li, T., Li, Q., Zhu, S., Ogihara, M.: A survey on wavelet applications in data mining. SIGKDD Explorations Newsletter 4(2), 49–68 (2002)CrossRefGoogle Scholar
  8. 8.
    Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In: Proc. of SIGMOD Conf., pp. 448–459 (1998)Google Scholar
  9. 9.
    Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. VLDB Journal 10(2-3), 199–223 (2001)zbMATHGoogle Scholar
  10. 10.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Chong Sun
    • 1
  • Yan Sheng Lu
    • 1
  • Chong Zhou
    • 1
  • Jun Liu
    • 1
  1. 1.DB& Software Engnieering Lab, Department of Computer Science, Huazhong universtiy of Sci.&Tech.430074 WuhanChina

Personalised recommendations