Advertisement

Pruning Search Space of Physical Database Design

  • Ladjel Bellatreche
  • Kamel Boukhalfa
  • Mukesh Mohania
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4653)

Abstract

Very large databases and data warehouses require many optimization structures to speed up their queries. These structures can be classified into two main categories: (1) redundant structures like mono attribute indexes, multi-attribute indexes (bitmap join indexes), materialized views, etc. and (2) no redundant structures, like horizontal partitioning and vertical partitioning. The problem of selecting any of these structures is a very crucial decision for the performance of the data warehouse. In this work, we focus on horizontal partitioning and bitmap join indexes. We first show the similarity between horizontal partitioning and bitmap join indexes. Secondly, we propose a new approach of selecting simultaneously these structures in order to reduce the query processing cost. It consists in using the horizontal partitioning schema obtained by a genetic algorithm to prune the search space of the problem of bitmap join index selection. Thirdly, we propose a greedy algorithm to select bitmap join indexes under a storage bound. Finally, we conduct several experimental studies using an adaptation of APB-1 benchmark in order to validate our proposed algorithms.

Keywords

Physical design data partitioning Bitmap join index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aouiche, K., Boussaid, O., Bentayeb, F.: Automatic Selection of Bitmap Join Indexes in Data Warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bellatreche, L., Boukhalfa, K.: An evolutionary approach to schema partitioning selection in a data warehouse environment. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp. 115–125. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bellatreche, L., Schneider, M., Lorinquer, H., Mohania, M.: Bringing together partitioning, materialized views and indexes to optimize performance of relational data warehouses. In: Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 15–25. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Chaudhuri, S.: Index selection for databases: A hardness study and a principled heuristic solution. IEEE Transactions on Knowledge and Data Engineering 16(11), 1313–1323 (2004)CrossRefGoogle Scholar
  5. 5.
    Chaudhuri, S., Narasayya, V.: An efficient cost-driven index selection tool for microsoft sql server. In: Proceedings of the International Conference on Very Large Databases, pp. 146–155 (August 1997)Google Scholar
  6. 6.
    Golfarelli, M., Rizzi, S.: A methodological framework for data warehouse design. In: DOLAP, pp. 3–9 (November 1998)Google Scholar
  7. 7.
    Guo, S., Wei, S., Weiss, M.A.: On satisfiability, equivalence, and implication problems involving conjunctive queries in database systems. IEEE Transactions on Knowledge and Data Engineering 8(4), 604–612 (1996)CrossRefGoogle Scholar
  8. 8.
    Gupta, H.: Selection of views to materialize in a data warehouse. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 98–112. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Labio, W., Quass, D., Adelberg, B.: Physical database design for data warehouses. In: Proceedings of the International Conference on Data Engineering (ICDE) (1997)Google Scholar
  10. 10.
    Oneil, P.: Multi-table joins through bitmapped join indioces. In: SIGMOD, vol. 24(03) (1995)Google Scholar
  11. 11.
    Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  12. 12.
    Papadomanolakis, S., Ailamaki, A.: Autopart: Automating schema design for large scientific databases using data partitioning. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM 2004), pp. 383–392 (June 2004)Google Scholar
  13. 13.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Sanjay, A., Narasayya, V.R., Yang, B.: Integrating vertical and horizontal partitioning into automated physical database design. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 359–370 (June 2004)Google Scholar
  15. 15.
    Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for parallel data warehouses. In: Proceedings of the International Conference on Very Large Databases, pp. 273–284 (2000)Google Scholar
  16. 16.
    Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M, Storm, A., Garcia-Arellano, C., Fadden, S.: Db2 design advisor: Integrated automatic physical database design. In: Proceedings of the International Conference on Very Large Databases, pp. 1087–1097 (August 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ladjel Bellatreche
    • 1
  • Kamel Boukhalfa
    • 1
  • Mukesh Mohania
    • 2
  1. 1.Poitiers University - LISI/ENSMAFrance
  2. 2.I.B.M. India Research LabIndia

Personalised recommendations