On Constructing Semantic Decision Tables

  • Yan Tang
  • Robert Meersman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4653)


Decision tables are a widely used knowledge management tool in the decision making process. Ambiguity and conceptual reasoning difficulties arise while designing large decision tables in a collaborative environment. We introduce the notion of Semantic Decision Table (SDT), which enhances a decision table with explicit decision semantics by annotating it properly with a domain ontology. In this paper, we focus on the SDT construction process. First, we map decision items to the ontology by building a rooted tree of decision binary facts and visualize it in a scalable manner. Formal ontological roles are used during this mapping process. Then, we commit the decision rules to the mapping results with a high level pseudo-natural language to ground their semantic. We illustrate with an SDT example from the domain of human resource management.


semantics decision table ontologies DOGMA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information Retrieval. Addison-Wesley, London (1999)Google Scholar
  2. 2.
    Colomb, R.M.: Representation of propositional expert systems as partial functions. Artificial Intelligence 109, 1–2 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    CSA, Z243.1-1970 for Decision Tables, Canadian Standards Association (1970)Google Scholar
  4. 4.
    Eskridge, T., Hayes, P., Hoffman, R.: Formalizing the Informal: a Confluence of Concept Mapping and the Semantic Web. In: Proc. of the Second International Conference on Concept Mapping, San Jod, Costa Rica (2006)Google Scholar
  5. 5.
    Fellbaum, C. (ed.): Wordnet, an Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  6. 6.
    Goedertier, S., Vanthienen, J.: Rule-based Business Process Modeling and Execution. In: Proceedings of the IEEE EDOC Workshop on Vocabularies Ontologies and Rules for The Enterprise (VORTE 2005). CTIT Workshop Proceeding Series, Enschede (2005) ISSN 0929-0672Google Scholar
  7. 7.
    Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing. Int. Journal of Human-Computer Studies 43, 907–928 (1995)CrossRefGoogle Scholar
  8. 8.
    Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of FOIS 1998, pp. 3–15. IOS press, Amsterdam (1998)Google Scholar
  9. 9.
    Jarrar, M.: Towards the notion of gloss, and the adoption of linguistic resources in formal ontology engineering. In: Proceeding of the 15th International World Wide Web Conference, WWW 2006, Edinburgh, Scotland, ACM Press, New York (2006)Google Scholar
  10. 10.
    Halpin, T.A.: Information Modeling and Relational Databases: From Conceptual Analysis to Logical Design. Morgan Kaufman Publishers, San Francisco (2001)Google Scholar
  11. 11.
    Hopgood, A.: Intelligent Systems for Engineers and Scientists, 2nd edn. CRC press LLC, Boca Raton (2000)Google Scholar
  12. 12.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing. In: Computational Linguistics and Speech Recognition, Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  13. 13.
    Meersman, R.: Ontologies and Databases: More Than a Fleeting Resemblance. In: OES SEO 2001 RomeWorkshop, Luiss Pub. (2001)Google Scholar
  14. 14.
    Novak, J., Gowin, D.: Learning How to Learn. Cambridge University Press, New York (1984)Google Scholar
  15. 15.
    Qmair, Y.: Foundations of Arabic philosophy. Dar El-Machreq. Beirut (1991) ISBN 2-7214-8024-3Google Scholar
  16. 16.
    Pustejovsky, J.: The Generative Lexicon. Journal of Computational Linguistics, pp. 409–441 (1991)Google Scholar
  17. 17.
    Reeve, L., Han, H.: Survey of Semantic Annotation Platforms. In: Proc. Of the 20th Annual ACM Symposium on Applied Computing, Web Technologies and Application Track, pp. 1634–1638. ACM Press, New York (2005)Google Scholar
  18. 18.
    Shiffman, R.N., Greenes, R.A.: Rule set reduction using augmented decision table and semantic subsumption techniques: application to cholesterol guidelines. In: Proceedings of Annual Symp. Computer and Application Medical Care, pp. 339–343 (1992)Google Scholar
  19. 19.
    Tang, Y., Meersman, R.: Towards Building Semantic Decision Table with Domain Ontologies. In: Man-chung, C. Liu, J.N.K., Cheung, R., Zhou, J. (eds.) Proceedings of International Conference of information Technology and Management (ICITM 2007), ISM Press (January 2007), ISBN 988-97311-5-0Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yan Tang
    • 1
  • Robert Meersman
    • 1
  1. 1.VUB STAR Lab, Department of Computer Science, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 BRUSSEL 5Belgium

Personalised recommendations