Related Terms Clustering for Enhancing the Comprehensibility of Web Search Results

  • Michiko Yasukawa
  • Hidetoshi Yokoo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4653)


Search results clustering is useful for clarifying vague queries and in managing the sheer volume of web pages. But these clusters are often incomprehensible to users. In this paper, we propose a new method for producing intuitive clusters that greatly aid in finding desired web search results. By using terms that are both frequently used in queries and found together on web pages to build clusters our method combines the better features of both “computer-oriented clustering” and “human-oriented clustering”. Our evaluation experiments show that this method provides the user with appropriate clusters and clear labels.


Search Engine Related Term Document Cluster Naive Method Term Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R.A., Hurtado, C.A., Mendoza, M.: Query Recommendation Using Query Logs in Search Engines. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588–596. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Zhang, Z., Nasraoui, O.: Mining search engine query logs for query recommendation. In: WWW 2006, pp. 1039–1040 (2006)Google Scholar
  3. 3.
    Zamir, O., Etzioni, O.: Web Document Clustering: A Feasibility Demonstration. In: SIGIR 1998, pp. 46–54 (1998)Google Scholar
  4. 4.
    Kohonen, T.: Self-Organizing Maps of Massive Document Collections. In: IJCNN 2000, vol. 2, pp. 3–12 (2000)Google Scholar
  5. 5.
    Osinski, S.: Improving Quality of Search Results Clustering with Approximate Matrix Factorisations. In: ECIR 2006, pp. 167–178 (2006)Google Scholar
  6. 6.
    Beeferman, D., Berger, A.L.: Agglomerative clustering of a search engine query log. In: KDD 2000, pp. 407–416 (2000)Google Scholar
  7. 7.
    Wen, J.R., Nie, J.Y., Zhang, H.J.: Query clustering using user logs. ACM Trans. Inf. Syst. 20(1), 59–81 (2002)CrossRefGoogle Scholar
  8. 8.
    Iwayama, M., Tokunaga, T.: Hierarchical Bayesian Clustering for Automatic Text Classification. In: IJCAI 1995, pp. 1322–1327 (1995)Google Scholar
  9. 9.
    Tokunaga, T., Iwayama, M., Tanaka, H.: Automatic Thesaurus Construction based on Grammatical Relations. In: IJCAI 1995, pp. 1308-1313 (1995)Google Scholar
  10. 10.
    Schutze, H., Pedersen, J.: A Cooccurrence-Based Thesaurus and Two Applications to Information Retrieval. Inf. Process. Manage. 33(3), 307–318 (1997)CrossRefGoogle Scholar
  11. 11.
    Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. Mit. Pr. (1999)Google Scholar
  12. 12.
    Kaki, M.: Optimizing the number of search result categories. In: CHI 2005, pp. 1517–1520 (2005)Google Scholar
  13. 13.
  14. 14.
    Eguchi, K., Oyama, K., Ishida, E., Kando, N., Kuriyama, K.: NTCIR-3 WEB: An Evaluation Workshop for Web Retrieval. NII Journal 6, 31–56 (2003)Google Scholar
  15. 15.
    Yasukawa, M., Yokoo, H.: Web Search Based on Clustering of Related Terms Acquired from Search Log (Japanese). IEICE Trans. Inf. Syst. J90-D(2), 269–280 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michiko Yasukawa
    • 1
  • Hidetoshi Yokoo
    • 1
  1. 1.Department of Computer Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515Japan

Personalised recommendations