A Scheduling Toolkit for Multiprocessor-Task Programming with Dependencies

  • Jörg Dümmler
  • Raphael Kunis
  • Gudula Rünger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4641)


The performance of many scientific applications for distributed memory platforms can be increased by utilizing multiprocessor-task programming. To obtain the minimum parallel runtime an appropriate schedule that takes the computation and communication performance of the target platform into account is required. However, many tools and environments for multiprocessor-task programming lack the support for an integrated scheduler. This paper presents a scheduling toolkit, which provides this support and integrates popular scheduling algorithms. The implemented scheduling algorithms provide an infrastructure to automatically determine a schedule for multiprocessor-tasks with dependencies represented by a task graph.


Schedule Problem Schedule Algorithm Task Graph Target Platform Data Parallelism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bal, H., Haines, M.: Approaches for integrating task and data parallelism. IEEE Concurrency 6, 74–84 (1998)CrossRefGoogle Scholar
  2. 2.
    Sips, H., van Reeuwijk, K.: An integrated annotation and compilation framework for task and data parallel programming in java. In: Proc. of 12th Int. Conf. on Par. Comp (ParCo 2003) (2004)Google Scholar
  3. 3.
    Rauber, T., Reilein-Ruß, R., Rünger, G.: On Compiler Support for Mixed Task and Data Parallelism. In: Proc. of 12th Int. Conf. on Par. Comp (ParCo 2003) (2004)Google Scholar
  4. 4.
    Ramaswamy, S., Sapatnekar, S., Banerjee, P.: A framework for exploiting task and data parallelism on distributed memory multicomputers. IEEE Trans. Par. Distrib. Syst. 8, 1098–1116 (1997)CrossRefGoogle Scholar
  5. 5.
    Rauber, T., Rünger, G.: A Transformation Approach to Derive Efficient Parallel Implementations. IEEE Transactions on Software Engineering 26, 315–339 (2000)CrossRefGoogle Scholar
  6. 6.
    Valiant, L.G.: A Bridging Model for Parallel Computation. Communications of the ACM 33, 103–111 (1990)CrossRefGoogle Scholar
  7. 7.
    Culler, D.E., Karp, R., Sahay, A., Schauser, K.E., Santos, E., Subramonian, R., von Eicken, T.: LogP: Towards a Realistic Model of Parallel Computation. In: PPOPP 1993. Proc. of the 4th ACM SIGPLAN Symp. on Principles & Practice of Par. Progr., San Diego, CA, pp. 1–12. ACM Press, New York (1993)CrossRefGoogle Scholar
  8. 8.
    Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. Technical report (1979)Google Scholar
  9. 9.
    Radulescu, A., van Gemund, A.: A Low-Cost Approach towards Mixed Task and Data Parallel Scheduling. In: Proc. of the 2001 Int. Conf. on Par. Processing, pp. 69–76. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  10. 10.
    Radulescu, A., Nicolescu, C., van Gemund, A., Jonker, P.: CPR: Mixed Task and Data Parallel Scheduling for Distributed Systems. In: IPDPS 2001. Proc. of the 15th Int. Par. & Distr. Processing Symp., p. 39. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  11. 11.
    Lepere, R., Trystram, D., Woeginger, G.J.: Approximation algorithms for scheduling malleable tasks under precedence constraints. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Rauber, T., Rünger, G.: Compiler support for task scheduling in hierarchical execution models. J. Syst. Archit. 45, 483–503 (1998)CrossRefGoogle Scholar
  13. 13.
    Rauber, T., Rünger, G.: Scheduling of data parallel modules for scientific computing. In: Proc. of the 9th SIAM Conf. on Par. Processing for Scientific Computing (PPSC), San Antonio, Texas, USA (1999)Google Scholar
  14. 14.
    Mounie, G., Rapine, C., Trystram, D.: A \(\frac{3}{2}\)-Approximation Algorithm for Scheduling Independent Monotonic Malleable Tasks. SIAM Journal on Computing 37, 401–412 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jörg Dümmler
    • 1
  • Raphael Kunis
    • 1
  • Gudula Rünger
    • 1
  1. 1.Chemnitz University of Technology, Department of Computer Science, 09107 ChemnitzGermany

Personalised recommendations