Automatic Generation of Dynamic Tuning Techniques

  • Paola Caymes-Scutari
  • Anna Morajko
  • Tomàs Margalef
  • Emilio Luque
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4641)


The use of parallel/distributed programming increases as it enables high performance computing. However, to cover the expectations of high performance, a high degree of expertise is required. Fortunately, in general, every parallel application follows a particular programming scheme, such as Master/Worker, Pipeline, etc. By studying the bottlenecks of these schemes, the performance problems they present can be mathematically modelled. In this paper we present a performance problem specification language to automate the development of tuning techniques, called “tunlets”. Tunlets can be incorporated into MATE (Monitoring, Analysis and Tuning Environment) which dynamically adapts the applications to the current conditions of the execution environment. In summary, each tunlet provides an automatic way to monitor, analyze and tune the application according to its mathematical model.


Performance Model Performance Function High Performance Computing Automatic Generation Parallel Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Morajko, A., Morajko, O., Jorba, J., Margalef, T., Luque, E.: Dynamic Performance Tuning of Distributed Programming Libraries. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2660, pp. 191–200. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Morajko, A., Morajko, O., Margalef, T., Luque, E.: MATE: Dynamic Performance Tuning Environment. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 98–107. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Buck, B., Hollingsworth, J.K.: An API for Runtime Code Patching, University of Maryland, Computer Science Department. Journal of High Performance Computing Applications (2000)Google Scholar
  4. 4.
    Aho, A., Ullman, J.: The Theory of Parsing, Translation, and Compiling, vol. 1. Prentice Hall, Englewood Cliffs (1972)Google Scholar
  5. 5.
    Aho, A., Sethi, R., Ullman, J.: Compilers - Principles, Techniques, and Tools. Addison-Wesley Publishing Company, London, UK (1986)Google Scholar
  6. 6.
    Extensible Markup Language (XML),
  7. 7.
    Paxon, V.: Flex, a fast scanner generator (1995),
  8. 8.
    Document Object Model (DOM),
  9. 9.
    XSL Transformations (XSLT) - Version 1.0,
  10. 10.
    XQuery 1.0, XPath 2.0, and XSLT 2.0 Functions and Operators,
  11. 11.
    César, E., Mesa, J.G., Sorribes, J., Luque, E.: Modeling Master-Worker Applications in POETRIES. In: IEEE 9th International Workshop HIPS 2004, IPDPS, April, 2004, pp. 22–30 (2004)Google Scholar
  12. 12.
    Mesa, J.G.: Framework Master/Worker, Universitat Autònoma de Barcelona, Departament d’Informàtica. Master (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Paola Caymes-Scutari
    • 1
  • Anna Morajko
    • 1
  • Tomàs Margalef
    • 1
  • Emilio Luque
    • 1
  1. 1.Departament d’Arquitectura de Computadors i Sistemes Operatius, E.T.S.E, Universitat Autònoma de Barcelona, 08193-Bellaterra (Barcelona)Spain

Personalised recommendations