Advertisement

Cooperation in Multi-organization Scheduling

  • Fanny Pascual
  • Krzysztof Rzadca
  • Denis Trystram
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4641)

Abstract

The distributed nature of the grid results in the problem of scheduling parallel jobs produced by several independent organizations that have partial control over the system. We consider systems composed of n identical clusters of m processors. We show that it is always possible to produce a collaborative solution that respects participant’s selfish goals, at the same time improving the global performance of the system. We propose algorithms with a guaranteed worst-case performance ratio on the global makespan: a 3-approximation algorithm if the last completed job requires at most m/2 processors, and a 4-approximation algorithm in the general case.

Keywords

Nash Equilibrium Approximation Ratio List Schedule Maximum Completion Time Identical Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Kesselman, C.: The Grid 2. Blueprint for a New Computing Infrastructure. Elsevier, Amsterdam (2004)Google Scholar
  2. 2.
  3. 3.
    Blazewicz, J.: Scheduling in Computer and Manufacturing Systems. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Shmoys, D., Wein, J., Williamson, D.: Scheduling parallel machines on-line. SIAM Journal on Computing 24 (1995)Google Scholar
  5. 5.
    Garey, M.R., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman & Co, New York, USA (1979)zbMATHGoogle Scholar
  6. 6.
    Graham, R.: Bounds on multiprocessor timing anomalies. SIAM J. Appl. Math 17(2) (1969)Google Scholar
  7. 7.
    Eyraud-Dubois, L., Mounie, G., Trystram, D.: Analysis of scheduling algorithms with reservations. In: Proceedings of IPDPS, IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  8. 8.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)Google Scholar
  9. 9.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms for selfish scheduling. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 345–357. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Schultz, A.S., Stier Moses, N.: On the performance of user equilibria in traffic networks. In: Proceedings of SODA, 86–87 (2003)Google Scholar
  12. 12.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proceedings of FOCS, pp. 295–304 (2004)Google Scholar
  13. 13.
    Angel, E., Bampis, E., Pascual, F.: The price of approximate stability for a scheduling game problem. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Liu, J., Jin, X., Wang, Y.: Agent-based load balancing on homogeneous minigrids: Macroscopic modeling and characterization. IEEE TPDS 16(7), 586–598 (2005)Google Scholar
  15. 15.
    Rotaru, T., Nageli, H.H.: Dynamic load balancing by diffusion in heterogeneous systems. J. Parallel Distrib. Comput. 64(4), 481–497 (2004)zbMATHCrossRefGoogle Scholar
  16. 16.
    Berenbrink, P., Friedetzky, T., Goldberg, L., Goldberg, P., Hu, Z., Martin, R.: Distributed Selfish Load Balancing. In: Proceedings of SODA, pp. 354–363. ACM Press, New York (2006)CrossRefGoogle Scholar
  17. 17.
    Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: Ourgrid: An approach to easily assemble grids with equitable resource sharing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Buyya, R., Abramson, D., Venugopal, S.: The grid economy. Special Issue on Grid Computing 93, 698–714 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fanny Pascual
    • 1
    • 2
  • Krzysztof Rzadca
    • 2
    • 3
  • Denis Trystram
    • 2
  1. 1.INRIA Rhône-AlpesFrance
  2. 2.LIG Grenoble UniversityFrance
  3. 3.Polish-Japanese Institute of Information Technology, WarsawPoland

Personalised recommendations