Practical Differential Profiling

  • Martin Schulz
  • Bronis R. de Supinski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4641)


Comparing performance profiles from two runs is an essential performance analysis step that users routinely perform. In this work we present eGprof, a tool that facilitates these comparisons through differential profiling inside gprof. We chose this approach, rather than designing a new tool, since gprof is one of the few performance analysis tools accepted and used by a large community of users.

eGprof allows users to ”subtract” two performance profiles directly. It also includes callgraph visualization to highlight the differences in graphical form. Along with the design of this tool, we present several case studies that show how eGprof can be used to find and to study the differences of two application executions quickly and hence can aid the user in this most common step in performance analysis. We do this without requiring major changes on the side of the user, the most important factor in guaranteeing the adoption of our tool by code teams.


  1. 1.
    Bell, R., Malony, A., Shende, S.: ParaProf: A Portable, Extensible, and Scalable Tool for Parallel Performance Profile Analysis. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 17–26. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Falgout, R., Yang, U.: hypre: a Library of High Performance Preconditioners. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.) Computational Science - ICCS 2002. LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Huck, K., Malony, A., Bell, R., Morris, A.: Design and Implementation of a Parallel Performance Data Management Framework. In: Proceedings of the 2005 International Conference on Parallel Processing (August 2005)Google Scholar
  4. 4.
    Karavanic, K.: Experiment Management Support for Parallel Performance Tuning. PhD thesis, Department of Computer Science, University of Wisconsin (1999)Google Scholar
  5. 5.
    Karavanic, K., May, J., Mohror, K., Miller, B., Huck, K., Knapp, R., Pugh, B.: Integrating Database Technology with Comparison-Based Parallel Performance Diagnosis: The PerfTrack Performance Experiment Management Tool. In: Proceedings of IEEE/ACM Supercomputing 2005 (November 2001)Google Scholar
  6. 6.
    Miller, B., Callaghan, M., Cargille, J., Hollingsworth, J., Irvin, R., Karavanic, K., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance Measurement Tool. IEEE Computer 28(11), 37–46 (1995)Google Scholar
  7. 7.
    Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR: Visualization and analysis of MPI resources. Supercomputer 12(1), 69–80 (1996)Google Scholar
  8. 8.
    Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: Hpl - a portable implementation of the high-performance linpack be nchmark for distributed-memory computers. available at,
  9. 9.
    The Open|SpeedShop Team. Open|SpeedShop for Linux (November 2006),

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Schulz
    • 1
  • Bronis R. de Supinski
    • 1
  1. 1.Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box 808, L-560, Livermore, CA 94551USA

Personalised recommendations