Advertisement

Improved Security Analysis of XEX and LRW Modes

  • Kazuhiko Minematsu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4356)

Abstract

We study block cipher modes that turn a block cipher into a tweakable block cipher, which accepts an auxiliary variable called tweak in addition to the key and message. Liskov et al. first showed such a mode using two keys, where one is the block cipher’s key and the other is used for some non-cryptographic function. Later, Rogaway proposed the XEX mode to reduce these two keys to one key. In this paper, we propose a generalization of the Liskov et al.’s scheme with a concrete security proof. Using this, we provide an improved security proof of the XEX and some improvements to the LRW-AES, which is a straightforward AES-based instantiation of Liskov et al.’s scheme proposed by the IEEE Security in Storage Workgroup.

Keywords

Block Cipher Advance Encryption Standard Message Authentication Code Index Vector Security Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption. In: FOCS 1997. Proceedings of the 38th Annual Symposium on Foundations of Computer Science, pp. 394–403 (1997)Google Scholar
  2. 2.
    Black, J.: Message Authentication Code. PhD dissertation (2000)Google Scholar
  3. 3.
    Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Springer, HeidelbergGoogle Scholar
  4. 4.
    Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Iwata, T., Kurosawa, K.: On the Universal Hash Functions in Luby-Rackoff Cipher. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 226–236. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Keliher, L., Sui, J.: Exact Maximum Expected Differential and Linear Probability for 2-Round Advanced Encryption Standard (AES). IACR ePrint Archive 2005/321Google Scholar
  9. 9.
    Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Liskov, M., Rivest, R., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Maurer, U., Pietrzak, K.: Composition of Random Systems: When Two Weak Make One Strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–427. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Minematsu, K., Tsunoo, Y.: Provably Secure MACs From Differentially-uniform Permutations and AES-based Implementations. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Naor, M., Reingold, O.: On the Construction of Pseudorandom Permutations: Luby-Rackoff Revisited. Journal of Cryptology 12(1), 29–66 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Pietrzak, K.: Composition Does Not Imply Adaptive Security. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of operation for efficient authenticated encryption. In: ACM CCS 2001. ACM Conference on Computer and Communications Security, pp. 196–205 (2001)Google Scholar
  18. 18.
    Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC (the early version of [19]), http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
  19. 19.
    Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Wegman, M., Carter, L.: New Hash Functions and Their Use in Authentication and Set Equality. Journal of Computer and System Sciences 22, 265–279 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Vaudenay, S.: On the Lai-Massey Scheme. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 9–19. Springer, Heidelberg (1999)Google Scholar
  22. 22.
  23. 23.
    Draft Proposal for Tweakable Narrow-block Encryption (2004), http://www.siswg.org/docs/LRW-AES-10-19-2004.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kazuhiko Minematsu
    • 1
  1. 1.NEC Corporation, 1753 Shimonumabe, Nakahara-Ku, Kawasaki 211-8666Japan

Personalised recommendations