Numerical Simulation of a Wing with a Gapless High-Lift System Using Circulation Control

  • K.-C. Pfingsten
  • R. Radespiel
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)


Numerical 2D simulations with a RANS flow solver are conducted to find the aerodynamic sensitivities of a gapless high-lift system. The investigated high-lift configuration is an airfoil which utilises trailing edge blowing. A small fraction of the engine flow is used for circulation control. The air is blown from a slot directly upstream of the flap and thus the flow over the flap can bear large adverse pressure gradients without separation. It was found that the use of circulation control yields lift coefficients which are comparable or superior to those generated by conventional high-lift systems. The promising results of the 2D simulations motivate applications to a wing-body configuration. The results show that a gapless high-lift system equipped with circulation control has the ability to provide sufficient lift for take off, climb and landing.


Chord Length High Lift Circulation Control Numerical Flow Simulation Main Wing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.J. Bamber. ”Wind tunnel tests on airfoil boundary layer control using a backward-opening slot”. NACA Report 385, 1932.Google Scholar
  2. [2]
    H. Hagedorn and P. Rüden. ”Windkanaluntersuchungen an einem Junkers-Doppelflügel mit Ausblaseschlitz am Heck des Hauptflügels”. Bericht A 64 der Lilienthal-Gesellschaft für Luftfahrtforschung, 1938.Google Scholar
  3. [3]
    F. Thomas. ”Untersuchungen über die Grenzschichtbeeinflussung durch Aus-blasen zur Erhöhung des Auftriebes”. Technical University Braunschweig, dis-sertation, 1961.Google Scholar
  4. [4]
    H. Körner and R. Löhr ”Dreikomponentenmessungen am Modell eines leichten STOL-Flugzeuges mit Ausblasen in Flügeltiefenrichtung”. Deutsche Forschungs-und Versuchsanstalt für Luft-und Raumfahrt, DLR-FB 75–174, 1975Google Scholar
  5. [5]
    R.J. Englar and R.A. Hemmerly. ”Design of the circulation control wing STOL demonstrator aircraft”. AIAA Journal of Aircraft Vol.18, No. 1, 1981, pp. 51–58.Google Scholar
  6. [6]
    C.J. Novak and K.C. Cornelius and R.K. Roads. ”Experimental investigations of the circular wall jet on a circulation control airfoil”, AIAA Paper 87–0155, 1987.Google Scholar
  7. [7]
    T. Gerhold. ”Overview of the hybrid RANS code TAU”. Notes on Nu-merical Fluid Mechanics and Multidisciplinary Design, Volume 89, 2005, (MEGAFLOW — Numerical Flow Simulation for Aircraft Design), pp. 81–92.Google Scholar
  8. [8]
    K.-C. Pfingsten and R. Radespiel and M. Kamruzzaman. ”Use of upper surface blowing and circulation control for gapless high-lift configurations”. CEAS/KATnet Conference on Key Aerodynamic Technologies, 2005.Google Scholar
  9. [9]
    J.L. Loth. ”Advantages of combining BLC suction with circulation control high-lift generation”. Progress in astronautics and aeronautics, Volume 214, 2006 (Applications of circulation control technology) pp 3–21Google Scholar
  10. [10]
    R.D. Joslin and G. S. Jones. ”Applications of circulation control technology”. Progress in astronautics and aeronautics, Volume 214, AIAA, 2006.Google Scholar
  11. [11]
    R. C. Swanson and C. L. Rumsey. ”Numerical issues for circulation control calculations”. AIAA Paper 2006–3008, 3rd AIAA Flow Control Conference, San Francisco, June, 2006.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • K.-C. Pfingsten
    • 1
  • R. Radespiel
    • 1
  1. 1.Institut für StrömungsmechanikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations