Advertisement

Design of a Retrofit Winglet for a Transport Aircraft with Assessment of Cruise and Ultimate Structural Loads

  • Th. Streit
  • J. Himisch
  • R. Heinrich
  • B. Nagel
  • K.H. Horstmann
  • C. Liersch
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)

Abstract

In this work retrofit winglets are designed for a transonic aircraft. The used geometry is a generic twin engine aircraft. In a first step, winglets are designed using a lifting line method along with RANS solutions. L/D is optimized by taking into account a certain wing root bending moment reserve for the reference wing. The final analysis includes wing deformation studies by means of fluid-structure coupling. Therefore a finite element model has been developed with respect to standard loadings of certification authority. Using the fluid-structure coupling process RANS solutions with deformed wing shapes are obtained for cruise conditions in order to determine the influence of deformation on performance and for a 2.5g load case in order to evaluate ultimate structural loading. Comparing the results of the rigid wing with the deformed wing the wing root bending moment and the bending moment of the device is clearly reduced for the deformed wing. Thereby the advantage to which an implementation of the described method for future design processes would lead becomes apparent.

Keywords

Load Case Reference Configuration Structural Load Transport Aircraft Wing Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Mann, The M-DAW Project, Modelling and Design of Advanced Wing Tip Devices, CEAS/KATNET Conference on Key Aerodynamic Technologies, Conference Proceedings, June 2005, Bremen.Google Scholar
  2. [2]
    J.-L. Hantrais-Gervois, M. Rapin, Aerodynamic and Structural Behaviour of a Wing Equipped with a Winglet at Cruise, 44 AIAA Aerospace Science Meeting and Exhibit, January 2006, Reno, Nevada, AIAA 2006-1489Google Scholar
  3. [3]
    B.B. Prananta, A. Namer, J.E.J. Maseland, J. van Muijden, S.P. Spekreijse, Winglets on Large Civil Aircraft: Impact on Wing Deformation, International Forum on Aerolasticity and Structural Dynamics IFASD 2005, 2005.Google Scholar
  4. [4]
    K.-H. Horstmann: Ein Mehrfach-Traglinienverfahren und seine Verwendung für Entwurf und Nachrechnung nichtplanarer Flügelanordnungen, DVFLR-FB 87–151, 1987.Google Scholar
  5. [5]
    N. Kroll, J.K. Fassbender [Hrsg.]: MEGAFLOW — Numerical How Simulation for Aircraft Design, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 89, Springer Verlag, Closing Preparation DLR Project MEGAFLOW, 2002 Braunschweig.Google Scholar
  6. [6]
    B. Nagel., M. Rose, H.P. Monner, R. Heinrich: An Alternative Procedure for FE-Wing Modelling, Deutscher Luft-und Raumfahrtkongress Nov. 2006, Braunschweig, Germany.Google Scholar
  7. [7]
    R. Heinrich, J. Wild, Th. Streit., B. Nagel: Steady Fluid-Structure Coupling for Transport aircraft, Deutscher Luft-und Raumfahrtkongress 2006, Braunschweig.Google Scholar
  8. [8]
    G. Heller, P. Kreuzer, S. Dirmeier, T. Streit: Aerodynamische Untersuchung verschiedener Hü gelseitenkanten-Erweiterungen der Envoy 7, Jahrbuch DGLR, Bd. III, pp. 1629–1634, 2002.Google Scholar
  9. [9]
    http://www.ansys.comGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Th. Streit
    • 1
  • J. Himisch
    • 2
  • R. Heinrich
    • 1
  • B. Nagel
    • 2
  • K.H. Horstmann
    • 1
  • C. Liersch
    • 1
  1. 1.Institute of Aerodynamics and Flow TechnologyDLR BraunschweigBraunschweigGermany
  2. 2.Institute of Composite Structures and Adaptive SystemsBraunschweigGermany

Personalised recommendations