Advertisement

Active Manipulation of a Rectangular Wing Vortex Wake with Oscillating Ailerons and Winglet-Integrated Rudders

  • Ralf Hörnschemeyer
  • Christoph Rixen
  • Sebastian Kauertz
  • Günther Neuwerth
  • Rolf Henke
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)

Abstract

This paper presents results of experimental investigations regarding the vortex wake of a rectangular wing with winglets in a water towing tank. The model comprises ailerons and additional rudders, which are integrated into the winglets. The ailerons and the rudders are able to oscillate around a static deflection to excite inherent short-wavelength instabilities in the vortex system. The Particle Image Velocimetry method is used to investigate the vortex wake up to about 40 spans behind the model. The results show that, depending on the preselected aileron and rudder deflections, an oscillation of correctly chosen frequency leads to a faster decay of the vortex wake in comparison to the statical case.

Keywords

Particle Image Velocimetry Light Sheet Vortex Pair Vortex System Image Velocimetry Particle Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.H. Andrews, G.H. Robinson, R.R. Larson: ”Aircraft Response to the Wing Trailing Vortices Generated by Large Jet Transports”. NASA Aircraft Safety and operating Problems, Vol. I. NASA SP-270, May 1971, p. 115–126.Google Scholar
  2. [2]
    J.D. Crouch: ”Instability and transient growth for two trailing-vortex pairs”. J. Fluid. Mech., Vol. 350, 1997, pp. 311–330.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J.D. Crouch, G.D. Miller, P.R. Spalart: ”An Active-Control System for Breakup of Airplane Trailing Vortices”. AIAA Journal, Vol. 39, No. 12, 2001, pp. 2374–2381.Google Scholar
  4. [4]
    S. C. Crow: ”Stability Theory for a Pair of Trailing Vortices”. AIAA Journal, Vol. 8 No.12, 1970, pp. 2172–2179.CrossRefGoogle Scholar
  5. [5]
    D. Fähre, L. Jacquin: ”Stability of a four-vortex aircraft wake”. Physics of Fluids, Vol. 12, No. 10, 2000, pp. 2438–2443.CrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Fabre, L. Jacquin, A. Loof: ”Optimal Perturbations in a four-vortex aircraft wake in counter-rotating configuration”. J. Fluid Mech., Vol. 451, 2002, pp. 319–328.zbMATHMathSciNetGoogle Scholar
  7. [7]
    S. Haverkamp, G. Neuwerth, D. Jacob: ”Active and passive wake vortex mitigation using control surfaces”. Aerospace Science and Technology, Vol. 9, No. 1, 2005, pp. 5–18.zbMATHCrossRefGoogle Scholar
  8. [8]
    S. Kauertz, G. Neuwerth: ”Excitation of Instabilities in the Wake of an Airfoil with Winglets”. AIAA-2006-3470, Applied Aerodynamics Conference, June 5–8, 2006.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ralf Hörnschemeyer
    • 1
  • Christoph Rixen
    • 1
  • Sebastian Kauertz
    • 1
  • Günther Neuwerth
    • 1
  • Rolf Henke
    • 1
  1. 1.Institute of Aerospace EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations