Advertisement

Numerical Simulation of Aerodynamic Problems with the SSG/LRR-ω Reynolds Stress Turbulence Model Using the Unstructured TAU Code

  • Bernhard Eisfeld
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)

Abstract

The SSG/LRR-ω differential Reynolds stress model has been implemented into DLR’s unstructured flow solver TAU. The model is a blend between the Speziale-Sarkar-Gatski model (SSG) in the far field and the Launder-Reece-Rodi model (LRR) near walls, combined with Menter’s baseline ω-equation for the length scale. The implementation has been checked for the transonic flow around the RAE 2822 airfoil, comparing with the results obtained with DLR’s structured flow solver FLOWer. In the following the model is applied to the L1T2 three-element airfoil at high incidence, demonstrating the model’s applicability to 2D high-lift problems. Furthermore results are shown for the transonic flow around the two wings of the Third AIAA Drag Prediction Workshop and the ONERA M6 wing.

Keywords

Reynolds Stress Reynolds Stress Model Eddy Viscosity Model Main Wing Aerodynamic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Barche (Ed): ”Experimental Data Base for Computer Program Assessment”, AGARD-Report AGARD-AR-138, 1979Google Scholar
  2. [2]
    B. Eisfeld: ”Numerical simulation of aerodynamic problems with a Reynolds stress model”. In: H.-J. Rath, C. Holze, H.-J. Heinemannm R. Henke, H. Hönlinger (Eds.): New Results in Numerical and Experimental Fluid Mechanics V, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 92, pp. 413–419, 2006Google Scholar
  3. [3]
    B. Eisfeld, ”Computation of Complex Compressible Aerodynamic Flows with a Reynolds Stress Turbulence Model”. In: G. Lube, G. Rapin (Eds.): International Conference on Boundary and Interior Layers, BAIL 2006, Göttingen, 2006Google Scholar
  4. [4]
    B. Eisfeld, O. Brodersen: ”Advanced Turbulence Modelling and Stress Analysis for the DLR-F6 Configuration”. AIAA-Paper 2005–4727, 2005Google Scholar
  5. [5]
    J. K. Fassbender: ”Improved Robustness for Numerical Simulation of Turbulent Flows around Civil Transport Aircraft at Right Reynolds Numbers”. Dissertation, Technische Universität Braunschweig, DLR Forschungsbericht, DLR-FB 2003-09, 2004Google Scholar
  6. [6]
    W. Haase, B. Aupoix, U. Bunge, D. Schwamborn (Eds.): ”FLOMANIA — A European Initiative on Flow Physics Modelling”. Notes on Numerical Fluid Mechanics, Vol. 94, Springer, 2006Google Scholar
  7. [7]
    Launder, B. E., Reece, G. J., Rodi, W., Progress in the development of a Reynolds-stress turbulence closure, Journal of Fluid Mechanics, 68, 1975, pp. 537–566zbMATHCrossRefGoogle Scholar
  8. [8]
    F R. Menter: ”Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”. AIAA Journal 32, 1994, pp. 1598–1605CrossRefGoogle Scholar
  9. [9]
    Moir, I. R. M., Measurements on a two-dimensional aerofoil with high-lift devices, AGARD-Report AGARD-AR-303, Vol. II, Chapter A2, 1994Google Scholar
  10. [10]
    P. R. Spalart, S. R. Allmaras: ”A One-Equation Turbulence Model for Aerodynamic Hows”. AIAA-Paper, 92–439, 1992Google Scholar
  11. [11]
    C. G. Speziale, S., Sarkar, T. B. Gatski: ”Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach”. J. Fluid Mech. 227, 1991, pp. 245–272zbMATHCrossRefGoogle Scholar
  12. [12]
    S. Wallin, A. V. Johansson: ”An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows”. J. Fluid Mech. 403, 2000, pp. 89–132zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    D. C. Wilcox: ”Reassessment of the Scale Determining Equation for Advanced Turbulence Models”. AIAA Journal 26, 1988, pp. 1299–1310zbMATHMathSciNetGoogle Scholar
  14. [14]
    D. C. Wilcox: ”Turbulence Modeling for CFD”. DCW Industries, La Cañada, USA, 2nd ed., 1998Google Scholar
  15. [15]
    Third AIAA CFD Drag Prediction Workshop, San Francisco, June 3–6, 2006 URL: http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/ (Status: November 14, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bernhard Eisfeld
    • 1
  1. 1.German Aerospace Center (DLR)Institute of Aerodynamics and Flow TechnologyBraunschweigGermany

Personalised recommendations