Advertisement

Control of Flow Separation in Adverse Pressure Gradients by Means of Crosswise Grooved Surfaces for Turbo Machine Applications

  • W. Hage
  • R. Meyer
  • C.O. Paschereit
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)

Abstract

The total pressure losses in a compressor stage are strongly affected by sec-ondary flow effects such as corner separation. Experiments in a highly loaded com-pressor cascade were performed to minimize the losses using a grooved surface on the side walls under cross flow conditions. This geometry hampers the secondary flow in the cascade in such a way, that the corner separation is less pronounced. The total pressure losses are reduced by 9.8% and the flow turning angle is increased. The experiments were accomplished at Reynolds numbers up to Re = 0 56 · 10 (based on 40 mm chord of the vane profile) and Mach numbers up to M = 0.67. To understand the flow physics of the crosswise grooves, additional experiments at lower Reynolds numbers were performed.

Keywords

Adverse Pressure Gradient Pressure Recovery Total Pressure Loss Compressor Cascade Groove Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brunn, A. & Nitsche, W.: ”Separation control by periodic excitation in a turbulent axissymmetric diffuser flow”, in: Journal of Turbulence 4-2003-003, IOP Publish-ing Ltd., April 2003Google Scholar
  2. [2]
    Cumpsty, N.A.(2004): ”Compressor Aerodynamics”, Krieger Publishing CompanyGoogle Scholar
  3. [3]
    Eck, B. (1966): ”Technische Strömungslehre (hier: Untersuchungen zu diskontinuierlichen Oberflächen mit hohen Druckgradienten”, von B. Regenscheit, p. 249), 7. Auflage, Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  4. [4]
    Fernholz, H. (1966): ”Eine grenzschichttheoretische Untersuchung optimaler Unterschalldiffusoren”, Ingenieur-Archiv, 35.Band, 3.Heft, pp 192–201Google Scholar
  5. [5]
    Hergt, A., Meyer, R., Engel, K.(2006): ”Experimental Investigation of flow control in Compressor Cascades”, Proc. of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air May 8–11, 2006, Barcelona, SpainGoogle Scholar
  6. [6]
    Howard, F.G. & Goodman, L. (1985): ”Axissymmetric bluff-body drag reduction through geometrical modification”, AIAA, J. Aircraft, Vol. 22, No. 6, June 1985, pp 516–522Google Scholar
  7. [7]
    Hübner, J. (1996): ”Experimentelle und theoretische Untersuchungen der wesentlichen Einflussfaktoren auf die Spalt-und Sekundärströmungen in Verdichtergittern”, PhD-Thesis, Universität der Bundeswehr, MünchenGoogle Scholar
  8. [8]
    Kang S. & Hirsch, C. (1991): ”Three Dimensional How in a Linear Compressor Cascade at Design Conditions”, ASME 91-GT-l 14Google Scholar
  9. [9]
    Meyer, R., Hage, W., Paschereit, CO. (2006): ”Flow control with crosswise grooves in diffuser flows”, Proc. EFMC6 KTH Euromech Fluid Mechanic Conference 6, Stockholm, Sweden, June 26–30Google Scholar
  10. [10]
    Migay, V.K. (1962): ”The aerodynamic effectiveness of discontinuous surfaces”, Inzhenero-Fisicheskiy Zhurnal Vol.5, No.4, pp 20–24Google Scholar
  11. [11]
    Mair, W.A (1965): ”The effect of rear-mounted disc on the drag of a blunt based body of revolution” Aeronautical Quarterly 16, Seite 350–360Google Scholar
  12. [12]
    Scholz, N. (1965): ”Aerodynamik der Schaufelgitter”, Verlag BraunGoogle Scholar
  13. [13]
    Stark, U. & Bross, S. (1996): ”Endwall boundary layer separations and loss mechanisms in two compressor cascades of different stagger angle”, AGARD-CP 571, Paper 1Google Scholar
  14. [14]
    Viswanath, P.R. (1995): Flow management techniques for base and afterbody drag reduction”, Progress in Aerospace Sciences 32, pp 79–129Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • W. Hage
  • R. Meyer
    • 1
  • C.O. Paschereit
    • 2
  1. 1.Institute of Propulsion Technology, Dept. of Engine AcousticsDLR (German Aerospace Center)BerlinGermany
  2. 2.Institute of Fluid Mechanics and Engineering AcousticsTechnical University of BerlinBerlinGermany

Personalised recommendations