Skip to main content

Studies on Tailplane Stall for a Generic Transport Aircraft Wind Tunnel Model

  • Conference paper
New Results in Numerical and Experimental Fluid Mechanics VI
  • 2809 Accesses

Abstract

A generic wind tunnel model for tailplane stall research was designed and experimentally investigated to establish a database for code validation. The configuration is numerically optimised to obtain large Reynolds numbers at the horizontal tailplane in a wind tunnel of limited size. It consists of a fuselage, a detachable horizontal tailplane and a tip-truncated wing, that mounts the model to the turntables of the closed test section. The wing was designed to reproduce a representative downwash in the tailplane region. The tests were conducted at a freestream Mach number of 0.16 and at a Reynolds number of 0.72 wx 106. Tailplane stall in case of natural and fixed transition was visualised by the oil-flow technique and quantified by pressure and force measurements and by the Particle Image Velocimetry of the turbulent trailing-edge separation. Numerical simulations, using the unstructured Reynoldsaveraged Navier Stokes Code TAU, are in good agreement with the experiments. They show a separation of the boundary layer starting at the trailing edge with high crossflow velocities at the outer tailplane. Depending on the boundary-layer transition, the stall occurs abruptly for natural transition, initialised by a burst of a laminar separation bubble, or gradually for fixed transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Gerhold. Overview of the Hybrid RANS Code TAU. In: N. Kroll et al. (Ed.). ”MEGAFLOW — Numerical How Simulation for Aircraft Design”. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 89, Springer, 2005, pp. 81–92.

    Google Scholar 

  2. A. Grote and R. Radespiel. Investigation of Tailplane Stall for a Generic Transport Aircraft Configuration. In: H.-J. Rath et al. (Ed.). ”New Results in Numerical and Experimental Fluid Mechanics”. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 92, Springer, 2006, pp. 50–58.

    Google Scholar 

  3. A. Grote and R. Radespiel. ”Studies on Tailplane Stall for a Generic Transport Aircraft Configuration”. AIAA-Paper 2006-655, 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nevada, USA, 2006.

    Google Scholar 

  4. Norddeutscher Verbund für Hoch-und Höchstleistungsrechnen, www.hlrn.de

    Google Scholar 

  5. A. Krynytzky. Conventional wall corrections for closed and open test sections. In: B. Ewald (Ed.). ”Wind tunnel wall corrections”. AGARD-AG-336, RTO/NATO, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grote, A., Radespiel, R. (2007). Studies on Tailplane Stall for a Generic Transport Aircraft Wind Tunnel Model. In: Tropea, C., Jakirlic, S., Heinemann, HJ., Henke, R., Hönlinger, H. (eds) New Results in Numerical and Experimental Fluid Mechanics VI. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74460-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74460-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74458-0

  • Online ISBN: 978-3-540-74460-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics