Experimental Investigation and Numerical Simulation on a Missile Radome at Mach 6

  • Carl Dankert
  • Hannes Otto
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)


The aerodynamic loads for a missile radome cruising near ground level are investigated. The investigation consists of experiments at Mach 6 performed in the High Enthalpy Shock Tunnel Göttingen (HEG) and CFD calculations using the TAU code of DLR. The first approach duplicated an hypersonic flight at 11 km altitude for some milliseconds with the appropriate Mach number, Re number, flow velocity, pressure and heat load. The experimental results for the heat transfer on the radome fit to the CFD data including the transition from laminar to turbulent.


Heat Transfer Mach Number Heat Transfer Rate Shock Tube Wall Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Bottin: ”Aerothermodynamic Model of an Inductively-Coupled Plasma Wind Tun-nel”, Dissertation, Université de Liège, 1999Google Scholar
  2. [2]
    H.K. Ciezki et al.: ”The DLR Research and Technology Project ”Hochagiler Flugkörper” (Missile of High Agility)”. Proceedings of the Innovative Missile Systems Symposium, RTO-MP-AVT-135, Paper 17, May 15–19 2006, Amsterdam, NL, pp 17–21, 17–17.Google Scholar
  3. [3]
    G. Eitelberg, T.J. Mclntyre, W.H. Beck:”The High Enthalpy Shock Tunnel in Göttingen”, AIAA paper, 92–3942, 1992. AIAA 17th Aerospace Ground Testing Con-ference.Google Scholar
  4. [4]
    T. Gerhold, O. Friedrichs, J. Evans, M. Galle: ”Calculation of Complex Three-Dimensional Configurations Employing the DLR-Tau-Code”, AIAA 97–0167, 1997Google Scholar
  5. [5]
    G. Koppenwallner: ”Fundamentals of Hypersonics: Aerodynamics and Heat Transfer”. In: Short Course Notes entitled Hypersonic Aerodynamics, Rhode Saint Genese, Bel-gium, 1984. Von Karman Institute for Fluid Dynamics.Google Scholar
  6. [6]
    A. Mack, V. Hannemann: ”Validation of the unstructured DLR-TAU-Code for Hyper-sonic Hows”, AIAA 2002–3111, 2002Google Scholar
  7. [7]
    C. Park: ”Review of Chemical-Kinetic Problems of Future NASA Missions”, I: Earth Entries. Journal of Thermophysics and Heat Transfer, No. 3, 385–398, 1993.Google Scholar
  8. [8]
    F. Seiler, J. Srulijes, M. Havermann, P. Hennig, P. Gleich:”Heat transfer measurements at the nose of a high speed Mach 6 missile.”, RTO AVT-135/RSY-020 Symposium on Innovative Missile Systems, 15–19 May 2006, Amsterdam, The Naval Barracs.Google Scholar
  9. [9]
    D.C. Wilcox: ”Turbulence Modeling for CFD”, DCW Industries, Inc., 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carl Dankert
    • 1
  • Hannes Otto
    • 2
  1. 1.Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center DLRGöttingenGermany
  2. 2.Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center DLRBraunschweigGermany

Personalised recommendations