Advertisement

Heat Fluxes Inside a Cavity Placed at the Nose of a Projectile Measured in a Shock Tunnel at Mach 4.5

  • F. Seiler
  • J. Srulijes
  • M. Gimenez Pastor
  • P. Mangold
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)

Abstract

A blunt-nosed supersonic projectile, equipped with a cavity, is a good alternative to reduce high nose heating rates preventing surface melting followed by ablation. For this purpose, tests were done in ISL’s shock tunnel STB. This facility allows reproducing atmospheric flow conditions present during a missile flight at various altitudes. The flow was visualized by shadowgraphs and the heat flux densities were measured with thermocouples at the bottom of various cavity geometries. A numerical simulation was also carried out using the FLUENT code. The comparison between numerical results and measurements is quite satisfactory. An important result of this study is that the deepest cavity has the smallest heat flux.

Keywords

Heat Flux Shock Tube Cavity Depth Shock Tunnel Fluent Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.B. Burbank and R.L. Stallings. ”Heat transfer and pressure measurements on a flat-face cylinder for a Machnumber range of 2.49 to 4.44”. NASA rep. TMX-221, 1959.Google Scholar
  2. [2]
    W.A. Engblom, B. Yuceil, D.B. Goldstein, D.S. Dolling. ”Hypersonic forward-facing cavity flow: an experimental and numerical study”. AIAA Paper 95–0293, 1995.Google Scholar
  3. [3]
    W.A. Engblom, B. Yuceil, D.B. Goldstein, D.S. Dolling. ”Experimental and numerical study of hypersonic forward-facing cavity flow”. Journal of Spacecraft and Rockets, Vol. 33, 1996, pp. 353–359.Google Scholar
  4. [4]
    W.A. Engblom, D.B. Goldstein, D. Ladoon, S. Schneider. ”Fluid dynamics of forward-facing cavity flow”. AIAA Paper 96–0667, 1996.Google Scholar
  5. [5]
    W.A. Engblom, D.B. Goldstein, ”Nose-tip surface heat reduction mechanism”. AIAA Paper 96–0357, 1996.Google Scholar
  6. [6]
    W.A. Engblom, D.B. Goldstein. ”Nose-tip surface heat reduction mechanism”. Journal of Therm ophysics and Heat Transfer, Vol. 10, 1996, pp. 598–606.Google Scholar
  7. [7]
    W.A. Engblom, D.B. Goldstein, D. Ladoon, S.P. Schneider. Dolling. ”Fluid dynamics of Hypersonic forward-facing cavity flow”. Journal of Spacecraft and Rockets, Vol. 34, 1997, pp. 437–444.CrossRefGoogle Scholar
  8. [8]
    H. Gunes, I. Fenercioglu, B. Yuceil. ”Instantaneous imaging of highly unstable bow shock wave caused by a hypervelocity projectile with a streamwise nose cavity”. 11th International Symposium on Flow Visualization, Notre Dame, Indiana, USA, 2004Google Scholar
  9. [9]
    J. Hartmann and B. Troll. ”On a new method for the generation of sound waves”. Physcal Review, Vol. 20, 1922, pp.719–727.CrossRefGoogle Scholar
  10. [10]
    L.D. Huebner and L.R Utreja. ”Experimental flowfield measurements of a nose cavity configuration”. Society of Automotive Engineers, Paper 871880, 1987.Google Scholar
  11. [11]
    E. J. Marquart, J.B. Grubb, L.R. Utreja. ”Bo-shock dynamics of a forward-facing nose cavity”, AIAA paper 87–2709, 1987.Google Scholar
  12. [12]
    H. Oertel. ”Wärmeübergangsmessungen”. In Kurzzeitphysik, Springer Verlag, Wien-sNew York, 1967.Google Scholar
  13. [13]
    H. Oertel. „Stoßrohre”, Springer Verlag, Wien-New York, 1966.Google Scholar
  14. [14]
    H. Oertel. ”Optische Strömungsmesstechnik”, G. Braun Verlag, Karlsruhe, 1989.Google Scholar
  15. [15]
    S. Pataud, B. Sauerwein, A. George, F. Seiler, G. Pastor, F. Boiler. „Étude de l’écoulement dans une cavité à la tête d’un missile avec la soufflerie à choc STB à Mach 4,5”. ISL-Rep. N 808/2005, 2005.Google Scholar
  16. [16]
    K.B. Yuceil and D.S. Dolling. ”Nose cavity effects on blunt body pressure and temperature at Mach 5”. Journal of Thermophysics and Heat Transfer, Vol. 9, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • F. Seiler
    • 1
  • J. Srulijes
    • 1
  • M. Gimenez Pastor
    • 2
  • P. Mangold
    • 2
  1. 1.French-German Research Institute of Saint-Louis (ISL)Saint-LouisFrance
  2. 2.Diehl BGT Defence (DBD)ÜberlingenGermany

Personalised recommendations