Advertisement

Numerical Analysis of Wing Vortices

  • Frank Zurheide
  • Wolfgang Schröder
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)

Abstract

The temporal development of generic vortex systems based on Lamb-Oseen vortices is computed by large-eddy simulations. For a two-vortex system the growth of shortwave co-operative elliptical and long-wave Crow instabilities leads to a pronounced decay of its vorticity distribution. The four-vortex system possesses a smaller decay rate than the two-vortex system.

Keywords

Vortex Core Vortex Pair Vortex System Vorticity Component Kinetic Energy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. & Fluids 35 (2006) 1126–1136CrossRefGoogle Scholar
  2. [2]
    Crouch, J.D.: Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350 (1997) 311–330zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Crow, S.C.: Stability theory for apair of trailing vortices. AIAA J. 8 (1970) 2172–2179CrossRefGoogle Scholar
  4. [4]
    Fabre, D., Jacquin, L.: Stability of a four-vortex aircraft wake model. Phys. Fluids 12 (2000) 2438–2443CrossRefMathSciNetGoogle Scholar
  5. [5]
    Guo, X., Schröder, W., Meinke, M.: Large-eddy simulations of film cooling flows. Comput. & Fluids 35 (2006) 587–606zbMATHCrossRefGoogle Scholar
  6. [6]
    Holzäpfel, F., Gerz, T.: Two-dimensional wake vortex physics in the stably stratified atmosphere. Aerosp. Sci. Technol. 5 (1999) 261–270CrossRefGoogle Scholar
  7. [7]
    Holzäpfel, F, Gerz, T., Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5 (2001) 95–108zbMATHCrossRefGoogle Scholar
  8. [8]
    Jacquin, L., Fabre, D., Sipp, D., Theofilis, V., Vollmers, H.: Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7 (2003) 577–593CrossRefGoogle Scholar
  9. [9]
    Jeong, J., Hussain, F: On the identification of a vortex. J. Fluid Mech. 285 (1995) 69–94zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Laporte, F, Corjon, A.: Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12 (2000) 1016–1031CrossRefMathSciNetGoogle Scholar
  11. [11]
    Leweke, T., Williamson, C.H.K.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360 (1998)Google Scholar
  12. [12]
    Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second-and sixthorder methods for large-eddy simulations. Comput. & Fluids 31 (2002) 695–718zbMATHCrossRefGoogle Scholar
  13. [13]
    Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows. Phys. Fluids 17 (2005)Google Scholar
  14. [14]
    Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge; New York (1992)zbMATHGoogle Scholar
  15. [15]
    Sipp, D.: Weakly nonlinear saturation of short-wave instabilities in a strained lamboseen vortex. Phys. Fluids 12 (2000) 1715–1729CrossRefMathSciNetGoogle Scholar
  16. [16]
    Spalart, P.R.: Airplane trailing vortices. Annual Review of Fluid Mechanics 30 (1998) 107–138CrossRefMathSciNetGoogle Scholar
  17. [17]
    Stumpf, E.: Untersuchung von 4-Wirbelsystemen zur Minimierung von Wirbelschleppen und ihre Realisierung an Transportflugzeugen. Diss., Aerodyn. Inst. RWTH Aachen (2003)Google Scholar
  18. [18]
    Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluids 2 (1970) 76–80MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Frank Zurheide
    • 1
  • Wolfgang Schröder
    • 1
  1. 1.Aerodynamisches InstitutRWTH AachenAachenGermany

Personalised recommendations