Skip to main content

Navier-Stokes High-Lift Airfoil Computations with Automatic Transition Prediction Using the DLR TAU Code

  • Conference paper
New Results in Numerical and Experimental Fluid Mechanics VI

Abstract

A Reynolds-averaged Navier-Stokes solver, a laminar boundary-layer code and different transition prediction methods for the prediction of Tollmien-Schlichting and cross flow instabilities were coupled for the automatic prediction of laminar-turbulent transition on general 3-dimensional aircraft configurations during the ongoing flow computation. The procedure is applied to a two-dimensional three-element high-lift airfoil configuration which is characterized by the existence of laminar separation bubbles using different operation modes of the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rudnik, R., Ronzheimer, A., and Schenk, M., „Berechnung von zwei-und dreidimensionalen Hochauftriebskonfigurationen durch Lösung der Navier-Stokes Gleichungen”, Jahrbuch 1996 — Bd. II der DGLR — JT 96–104, Deutscher Luft-und Raumfahrtkongreß, DGLR-Jahrestagung Sep. 1996, pp. 717–726.

    Google Scholar 

  2. Smith, A.M.O., Gamberoni, N., ”Transition, Pressure Gradient and Stability Theory”, Douglas Aircraft Company, Long Beach, Calif. Rep. ES 26388, 1956.

    Google Scholar 

  3. van Ingen, J.L., ”A suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region”, University of Delft, Dept. of Aerospace Engineering, Delft, The Netherlands, Rep. VTH-74, 1956.

    Google Scholar 

  4. Kroll, N., Rossow, C.-C., Schwamborn, D., Becker, K., and Heller, G, ”MEGAFLOW — A Numerical How Simulation Tool For Transport Aircraft Design”, ICAS Congress 2002 [CD-Rom], ICAS, Toronto, Canada, 2002, pp. 1.105.1–1.105.20.

    Google Scholar 

  5. Nebel, C., Radespiel, R., and Wolf, T., ”Transition Prediction for 3D Hows Using a Reynolds-Averaged Navier-Stokes Code and N-Factor Methods”, AIAA-2003-3593.

    Google Scholar 

  6. Krimmelbein, N., Radespiel, R., Nebel, C., ”Numerical Aspects of Transition Prediction for Three-Dimensional Configurations”, AIAA-2005-4764.

    Google Scholar 

  7. ”COCO — A Program to compute Velocity and Temperature Profiles for Local and Nonlocal Stability Analysis of Compressible, Conical Boundary Layers with Suction”, ZARM Technik Report, November 1998.

    Google Scholar 

  8. Schrauf, G., ”LILO 2.1 User’s Guide and Tutorial”, Bremen, Germany, GSSC Technical Report 6, originally issued Sep. 2004, modified for Version 2.1 July 2006.

    Google Scholar 

  9. Krumbein, A, ”Automatic Transition Prediction and Application to 3D Wing Configurations”, in print at Journal of Aircraft, DOI: 10.2514/2254; also AIAA Paper 2006-914, June 2006.

    Google Scholar 

  10. Stock, H. W., Degenhardt, E., ”A simplified e N method for transition prediction in twodimensional, incompressible boundary layers”, Zeitung für Flugwissenschaft und Weltraumforschung, Vol. 13, 1989, pp. 16–30.

    Google Scholar 

  11. Casalis, G., Arnal, D., ”ELFIN II Subtask 2.3: Database method — Development and validation of the simplified method for pure crossflow instability at low speed”, ELFIN II — European Laminar How Investigation, Technical Report n° 145, ONERA-CERT, Département dÉtudes et de Recherches en Aérothermodynamique (DERAT), R.T. DERAT n° 119/5618.16, December 1996.

    Google Scholar 

  12. Manie, F., Piccin, O., Ray, J.P., ”Test Report of the 2D Model M1 in the ONERA F1 Wind Tunnel”, GARTEUR AD(AG-08),TP-041, 1989.

    Google Scholar 

  13. Arthur, M. T., Dol, H., Krumbein, A., Houdeville, R., Ponsin, J., ”Application of Transition Criteria in Navier-Stokes Computations”, GARTEUR AD(AG-35), TP-137, 2003.

    Google Scholar 

  14. Wild, J., private communications, DLR, Institute of Aerodynamics and How Technology, Braunschweig, Germany, Nov. 2003 & Nov. 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krumbein, A., Krimmelbein, N. (2007). Navier-Stokes High-Lift Airfoil Computations with Automatic Transition Prediction Using the DLR TAU Code. In: Tropea, C., Jakirlic, S., Heinemann, HJ., Henke, R., Hönlinger, H. (eds) New Results in Numerical and Experimental Fluid Mechanics VI. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74460-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74460-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74458-0

  • Online ISBN: 978-3-540-74460-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics