Advertisement

Improvement of the Automatic Grid Adaptation for Vortex Dominated Flows Using Advanced Vortex Indicators with the DLR-Tau Code

  • M. Widhalm
  • Andreas Schütte
  • Thomas Alrutz
  • Matthias Orlt
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)

Abstract

Vortex dominated flows appear in many flow simulations such as wake turbulence of an aircraft or a delta wing at a high angle of attack. For detailed investigations of vortex breakdown, vortex interactions or tracing vortex cores, an automated grid adaptation with suitable vortex indicators is essential. Physical indicators, e.g. the vorticity magnitude or the total pressure loss, are in most cases not sufficient for correctly identifying a vortex core.

Keywords

Vortex Core Vortical Structure Vortex Breakdown Total Pressure Loss Delta Wing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alrutz T., Rütten M.: Investigation of Vortex-Breakdown over a Pitching Delta Wing applying the DLR TAU-Code with Full Automatic Grid Adaptation. 35th AIAA Fluid Dynamics, 6–9 June, Toronto, 2005.Google Scholar
  2. [2]
    Alrutz T., Orlt M.: Parallel dynamic grid refinement for industrial applications. In Proceedings of ECCOMAS 2006, Egmond aan Zee, The Netherlands, September 5–8Google Scholar
  3. [3]
    Chong M.S., Perry A.E., Cantwell B.J.: A general classification of three-dimensional flow fields. Phys. Fluids, A 2, 765, 1990.MathSciNetGoogle Scholar
  4. [4]
    Gerhold T., Friedrichs O., Evans J., Galle M.: Calculation of Complex three-dimensional configurations employing the DLR TAU. AIAA-97-0167, 1997Google Scholar
  5. [5]
    Hunt J.C.R, Wray A.A., Moin P.: Eddies, stream and convergent zones in turbulent flows. Center for Turbulent Research Report CTR-S88, p. 318, 1988.Google Scholar
  6. [6]
    Jeong J., Hussain F.: On the identification of a vortex. J. Fluid Mech., pp. 6–94, 1994.Google Scholar
  7. [7]
    Levy Y., Degani D., Seginer A.: Graphical Visualization of Vortical Flows by Means of Helicity. AIAA Journal, Vol. 28, No. 8, 1990.Google Scholar
  8. [8]
    Melander M.V., Hussain F.: Polarized vorticity dynamics on a vortex column. Phys. Fluids, A 5, 1992, 1993.Google Scholar
  9. [9]
    Metcalfe R., Hussain F., Menon S., Hayakawa M.: Coherent structures in a turbulent mixing layer. Springer, A 5, 1985.Google Scholar
  10. [10]
    Miliou A., Mortazavi I., Sherwin S.: Cut-off analysis of coherent vortical structure identification in a three-dimesnional external flow. Comptes Rendus Mecanique, pp. 211–217, 2005.Google Scholar
  11. [11]
    Schütte, A.; Einarsson, G.; Schöning, B.; Raichle, A.; Mönnich, W., Neumann, J.; Arnold, J.; Alrutz, T.: Prediction of the Unsteady Behavior of Maneuvering Aircraft by CFD Aerodynamic, Flight-Mechanic and Aeroelastic Coupling. RTO AVT-Symposium Budapest, April 2005.Google Scholar
  12. [12]
    Truesdell C: The kinematics of vorticity. Indiana University 1953.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Widhalm
    • 1
  • Andreas Schütte
    • 1
  • Thomas Alrutz
    • 2
  • Matthias Orlt
    • 2
  1. 1.Institute of Aerodynamics and Flow TechnologyDLRBraunschweigGermany
  2. 2.Institute of Aerodynamics and Flow TechnologyDL RGöttingenGermany

Personalised recommendations