Advertisement

A Flat Plate Experiment for Investigations of Vortex Generator Jets at High Reynolds Number

  • Jens Ortmanns
  • Christian J. Kähler
  • Rolf Radespiel
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 96)

Abstract

A flat plate boundary layer experiment is designed to examine the physical mechanism and the performance of vortex generator jets at Reynolds numbers up to Reθ = 20000. The investigation of vortex generator jets at this flow state is of fundamental importance for the assessment of flow control at takeoff and landing conditions. First results show that the optimal skew angle is about β = 15° for the slot actuator. The formation of the longitudinal vortex structures can be described in detail by the derived vortex topology based on the measurement results.

Keywords

Wind Tunnel Turbulent Boundary Layer Vortex Structure Free Stream Velocity Longitudinal Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. P. Johnston, M. Nishi: ”Vortex Generator Jets — Means for Flow Separation Control”. AIAA Journal, Vol. 28, No. 6, pp. 989–994, 1990.Google Scholar
  2. [2]
    J. C. Magill, H. R. McManus: ”Exploring the Feasibility of Pulsed Jet Separation Control for Aircraft Configurations”. Journal of Aircraft, Vol. 38, No.1, January-February, 2001.Google Scholar
  3. [3]
    P. Scholz, J. Ortmanns, C. J. Kahler, R. Radespiel: ”Leading Edge Separation Control by Means of Pulsed Jet Actuators”. AIAA 2006–2850, 3rdAIAA Flow Control Conference, San Francisco, USA, 5–8 June 2006.Google Scholar
  4. [4]
    J. Ortmanns, M. Bitter, C. J. Kahler: ”Visualization and Analysis of Dynamic Vortex Structures for Flow Control Applications by Means of 3C2D-PIV”. 12th Int. Symp. on Flow Visualization, Göttingen, Germany, 10–14 Sept. 2006.Google Scholar
  5. [5]
    A. Darabi and I. Wygnanski: ”Active management of naturally separated flow over a solid surface. Part 1: The forced reattachment process. Part2: The separation process”. Journal of Fluid Mechanicş 510 pp 105–144 2004zbMATHCrossRefGoogle Scholar
  6. [6]
    http://www.tu-braunschvseig.de/ism/mstitut/vskanlagen/muh.Google Scholar
  7. [7]
    M. Drela: ”A User’s Guide to MSES 2.95”. MIT Computational Aerospace Sciences Laboratory, 1996.Google Scholar
  8. [8]
    C. J. Kahler, U. Scholz, J. Ortmanns: ”Wall-shear-stress and near-wall turbulence measurements sip to single pixel resolution by mean of long distance micro-PIV”. Exp. in Fluids, vol. 41, no. 2, pp. 327–341, 2006.CrossRefGoogle Scholar
  9. [9]
    H. Schlichtung, K. Gersten: ”Grenzschichttheorie”. Springer-Verlag, 1997.Google Scholar
  10. [10]
    G. Godard, J. M. Foucaut, M. Stanislas: ”Control of decelerating boundary layer. Part 2: Opimization of slotted jets vortex generators”. AST, 10, pp. 394–400, 2006.Google Scholar
  11. [11]
    X. Zhang, M. W. Collins: ”Measurements of a longitudinal vortex generated by a rectangular jet in a turbulent boundary layer.”, Phys. Fluids, 9(6), June 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jens Ortmanns
    • 1
  • Christian J. Kähler
    • 1
  • Rolf Radespiel
    • 1
  1. 1.Institut für StrömungsmechanikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations