Skip to main content

Complexity Upper Bounds for Classical Locally Random Reductions Using a Quantum Computational Argument

  • Conference paper
  • 1136 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4708))

Abstract

We use a quantum computational argument to prove, for any integer k ≥ 2, a complexity upper bound for nonadaptive k-query classical locally random reductions (LRRs) that allow bounded-errors. Extending and improving a recent result of Pavan and Vinodchandran [PV], we prove that if a set L has a nonadaptive 2-query classical LRR to functions g and h, where both g and h can output O(logn) bits, such that the reduction succeeds with probability at least , then . Previous complexity upper bound for nonadaptive 2-query classical LRRs was known only for much restricted LRRs: LRRs in which the target functions can only take values in {0,1,2} and the error probability is zero [PV]. For k > 2, we prove that if a set L has a nonadaptive k-query classical LRR to boolean functions g 1, g 2, ..., g k such that the reduction succeeds with probability at least 2/3 and the distribution on \((k/2+\sqrt{k})\)-element subsets of queries depends only on the input length, then . Previously, for no constant k > 2, a complexity upper bound for nonadaptive k-query classical LRRs was known even for LRRs that do not make errors.

Our proofs follow a two stage argument: (1) simulate a nonadaptive k-query classical LRR by a 1-query quantum weak LRR, and (2) upper bound the complexity of this quantum weak LRR. To carry out the two stages, we formally define nonadaptive quantum weak LRRs, and prove that if a set L has a 1-query quantum weak LRR to a function g, where g can output polynomial number of bits, such that the reduction succeeds with probability at least , then .

Research supported by the New Researcher Grant of University of South Florida.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Limitations of quantum advice and one-way communication. In: Proceedings of the 19th Annual IEEE Conference on Computational Complexity, pp. 320–332. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  2. Aaronson, S.: Quantum computing, postselection, and probabilistic polynomial-time. Technical Report 05-003, Electronic Colloquium on Computational Complexity (ECCC) (January 2005), http://www.eccc.uni-trier.de/eccc/

  3. Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM Journal on Computing 35(4), 804–824 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. Journal of Computer and System Sciences 39(1), 21–50 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aharonov, D., Regev, O.: A lattice problem in quantum NP. In: Proceedings of the 44th IEEE Symposium on Foundations of Computer Science, pp. 210–219. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  7. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. Journal of the ACM 52(5), 749–765 (2005)

    Article  MathSciNet  Google Scholar 

  8. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM 45(1), 70–122 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Babai, L.: A random oracle separates PSPACE from the Polynomial Hierarchy. Information Processing Letters 26(1), 51–53 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 37–48. Springer, Heidelberg (1990)

    Google Scholar 

  11. Beigel, R., Fortnow, L., Gasarch, W.: A tight lower bound for restricted PIR protocols. Computational Complexity 15, 82–91 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Locally random reductions: Improvements and applications. Journal of Cryptology 10(1), 17–36 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1(1), 3–40 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Blum, M., Kannan, S.: Designing programs that check their work. Journal of the ACM 42(1), 269–291 (1995)

    Article  MATH  Google Scholar 

  15. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences 47(3), 549–595 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing 13(4), 850–864 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. de Wolf, R.: Lower bounds on matrix rigidity via a quantum argument. In: Proceedings of the 33rd International Colloquium on Automata, Languages, and Programming, pp. 62–71 (2006)

    Google Scholar 

  18. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. Journal of the ACM 43, 268–292 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fortnow, L., Szegedy, M.: On the power of two-local random reductions. Information Processing Letters 44(6), 303–306 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer Security 28, 270–299 (1984)

    MATH  MathSciNet  Google Scholar 

  21. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. Journal of Computer and System Sciences 69(3), 395–420 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kerenidis, I.: Quantum multiparty communication complexity and circuit lower bounds. Technical Report quant-ph/0504087, Los Alamos e-Print Quantum Physics Technical Report Archive (April 12, 2005)

    Google Scholar 

  23. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. Journal of the ACM 39(4), 859–868 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lipton, R.: New directions in testing. In: Feigenbaum, J., Merritt, M. (eds.) Distributed Computing and Cryptography. DIMACS series in Discrete Mathematics and Theoretical Computer Science, pp. 191–202. American Mathematical Society (1991)

    Google Scholar 

  25. Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and classical formula size lower bounds. In: Proceedings of the 20th Annual IEEE Conference on Computational Complexity, pp. 76–90. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  26. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, pp. 369–377. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  27. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Pavan, A., Vinodchandran, N.: 2-local random reductions to 3-valued functions. Computational Complexity (to appear)

    Google Scholar 

  29. Rivest, R.: Workshop on communication and computing. MIT, Cambridge (1986)

    Google Scholar 

  30. Shamir, A.: IP=PSPACE. Journal of the ACM 39(4), 869–877 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wehner, S., de Wolf, R.: Improved lower bounds for locally decodable codes and private information retrieval. In: Proceedings of the 32nd International Colloquium on Automata, Languages, and Programming. LNCS, pp. 1424–1436. Springer, Heidelberg (2005)

    Google Scholar 

  32. Yao, A.: An application of communication complexity to cryptography. In: Lecture at DIMACS Workshop on Structural Complexity and Cryptography (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luděk Kučera Antonín Kučera

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tripathi, R. (2007). Complexity Upper Bounds for Classical Locally Random Reductions Using a Quantum Computational Argument. In: Kučera, L., Kučera, A. (eds) Mathematical Foundations of Computer Science 2007. MFCS 2007. Lecture Notes in Computer Science, vol 4708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74456-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74456-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74455-9

  • Online ISBN: 978-3-540-74456-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics