Comparing Variants of MMAS ACO Algorithms on Pseudo-Boolean Functions

  • Frank Neumann
  • Dirk Sudholt
  • Carsten Witt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4638)


Recently, the first rigorous runtime analyses of ACO algorithms have been presented. These results concentrate on variants of the MAX-MIN ant system by Stützle and Hoos and consider their runtime on simple pseudo-Boolean functions such as OneMax and LeadingOnes. Interestingly, it turns out that a variant called 1-ANT is very sensitive to the choice of the evaporation factor while a recent technical report by Gutjahr and Sebastiani suggests partly opposite results for their variant called MMAS. In this paper, we elaborate on the differences between the two ACO algorithms, generalize the techniques by Gutjahr and Sebastiani and show improved results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  2. 2.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: An autocatalytic optimizing process. Technical Report 91-016 Revised, Politecnico di Milano (1991)Google Scholar
  3. 3.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambr. Univ.Press, Cambridge (1995)zbMATHGoogle Scholar
  5. 5.
    Mitzenmacher, M., Upfal, E.: Probability and Computing – Randomized Algorithms and Probabilistic Analysis. Cambr. Univ. Press, Cambridge (2005)zbMATHGoogle Scholar
  6. 6.
    Gutjahr, W.J.: ACO algorithms with guaranteed convergence to the optimal solution. Inform. Process. Lett. 82, 145–153 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theor. Comput. Sci. 344, 243–278 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Gutjahr, W.J.: First steps to the runtime complexity analysis of Ant Colony Optimization. Comput. Oper. Res (to appear)Google Scholar
  9. 9.
    Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer, Heidelberg (2006) extended version to appear in Algorithmica CrossRefGoogle Scholar
  10. 10.
    Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the runtime analysis of the 1-ANT ACO algorithm. In: Proc. of GECCO 2007, ACM Press, New York (2007)Google Scholar
  11. 11.
    Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization. Technical report, Mathematics department, ”Sapienza” Univ. of Rome, 2007/03 (2007)Google Scholar
  12. 12.
    Gutjahr, W.J.: Mathematical runtime analysis of ACO algorithms: Survey on an emerging issue. Swarm Intelligence (to appear)Google Scholar
  13. 13.
    Gutjahr, W.J.: On the finite-time dynamics of ant colony optimization. Methodol. Comput. Appli. Probab. 8, 105–133 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Stützle, T., Hoos, H.H.: MAX-MIN ant system. J. Future Gener. Comput. Syst. 16, 889–914 (2000)CrossRefGoogle Scholar
  15. 15.
    Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Trans. Evolut. Comput. 5(6), 589–599 (2001)CrossRefGoogle Scholar
  16. 16.
    Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evolut. Comput. 7, 173–203 (1999)Google Scholar
  17. 17.
    Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple randomized search heuristics. Combin. Probab. Comput. 14, 225–247 (2005)zbMATHCrossRefGoogle Scholar
  18. 18.
    Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-boolean functions. In: Sarker, R., Yao, X., Mohammadian, M. (eds.) Evolutionary Optimization, pp. 349–369. Kluwer, Dordrecht (2002)Google Scholar
  19. 19.
    Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Kovač (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Frank Neumann
    • 1
  • Dirk Sudholt
    • 2
  • Carsten Witt
    • 2
  1. 1.Max-Planck-Institut für Informatik, SaarbrückenGermany
  2. 2.LS 2, FB Informatik, Universität Dortmund, DortmundGermany

Personalised recommendations