A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem

  • Benoît Laurent
  • Jin-Kao Hao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4638)


This paper introduces the ”block moves” neighborhood for the Multiple Depot Vehicle Scheduling Problem. Experimental studies are carried out on a set of benchmark instances to assess the quality of the proposed neighborhood and to compare it with two existing neighborhoods using shift and swap. The ”block moves” neighborhood can be beneficial for any local search algorithm.


Tabu Search Neighborhood Structure Constraint Violation Local Search Algorithm Benchmark Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertossi, A., Carraresi, P., Gallo, G.: On some matching problems arising in vehicle scheduling models. Networks 17, 271–281 (1987)zbMATHCrossRefGoogle Scholar
  2. 2.
    Odoni, A.R., Rousseau, J.M., Wilson, N.H.: Models in urban and air transportation, vol. 6, pp. 107–150. Elsevier Science, North-Holland, Amsterdam (1994)Google Scholar
  3. 3.
    Desaulniers, G., Hickman, M.: Public transit, pp. 69–120. Elsevier Science, North-Holland, Amsterdam (2007)Google Scholar
  4. 4.
    Pepin, A.S., Desaulniers, G., Hertz, A., Huisman, D.: Comparison of heuristic approaches for the multiple vehicle scheduling problem. Technical Report EI2006-34, Economie Institute, Erasmus University Rotterdam, Rotterdam (2006)Google Scholar
  5. 5.
    Glover, F.: Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Applied Mathematics 65(1-3), 223–253 (1996)zbMATHCrossRefGoogle Scholar
  6. 6.
    Carpenato, G., Dell’Amico, M., Fischetti, M., Toth, P.: A branch and bound algorihm for the multiple depot vehicle scheduling problem. Networks 19, 531–548 (1989)CrossRefGoogle Scholar
  7. 7.
    Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modeling and Algorithms 5(1), 65–89 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Benoît Laurent
    • 1
    • 2
  • Jin-Kao Hao
    • 2
  1. 1.Perinfo SA, StrasbourgFrance
  2. 2.LERIA, Université d’Angers, AngersFrance

Personalised recommendations