Solving a Bi-objective Vehicle Routing Problem by Pareto-Ant Colony Optimization

  • Joseph M. Pasia
  • Karl F. Doerner
  • Richard F. Hartl
  • Marc Reimann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4638)


In this paper we propose the application of Pareto ant colony optimization (PACO) in solving a bi-objective capacitated vehicle routing problem with route balancing (CVRPRB). The objectives of the problem are minimization of the tour length and balancing the routes. We propose PACO as our response to the deficiency of the Pareto-based local search (P-LS) approach, which we also developed to solve CVRPRB. The deficiency of P-LS is the lack of information flow among its pools of solutions. PACO is a natural choice in addressing this deficiency since PACO and P-LS are similar in structure. It resolves the absence of information flow through its pheromone values. Several test instances are used to demonstrate the contribution and importance of information flow among the pools of solutions. Computational results show that PACO improves P-LS in most instances with respect to different performance metrics.


Local Search Test Instance Tour Length Capacitate Vehicle Rout Problem Local Search Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dantzig, G., Ramsey, J.: The truck dispatching problem. Management Science 6, 80–91 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Lenstra, J., Kan, A.: Complexity of vehicle routing and scheduling problem. Networks 11, 221–227 (1981)CrossRefGoogle Scholar
  3. 3.
    Pasia, J.M., Doerner, K.F., F., H.R., Reimann, M.: A population-based local search for solving a bi-objective vehicle routing problem. In: Cotta, C., van Hemert, J. (eds.) Evolutionary Computation in Combinatorial Optimisation - EvoCOP 2007. LNCS, vol. 4446, pp. 166–175. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., Stummer, C.: Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research 131, 79–99 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  6. 6.
    Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12, 568–581 (1964)Google Scholar
  7. 7.
    Doerner, K., Gronalt, M., Hartl, R.F., Reimann, M., Strauss, C., Stummer, M.: SavingsAnts for the vehicle routing problem. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 11–20. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Jozefowiez, N., Semet, F., Talbi, E.: Parallel and hybrid models for multi-objective optimization: Application to the vehicle routing problem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VII. LNCS, vol. 2439, pp. 271–280. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimization, John Wiley and Sons, Chichester (1979)Google Scholar
  10. 10.
    Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical Report TIK-Report No. 214, Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland (2006)Google Scholar
  11. 11.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar
  12. 12.
    Hansen, M., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-dominated set. Technical Report Technical Report IMM-REP-1998-7, Technical University of Denmark (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joseph M. Pasia
    • 1
  • Karl F. Doerner
    • 2
    • 3
  • Richard F. Hartl
    • 2
  • Marc Reimann
    • 4
  1. 1.Department of Mathematics, University of the Philippines-Diliman, Quezon CityPhilippines
  2. 2.Department of Business Administration, University of Vienna, ViennaAustria
  3. 3.Salzburg Research Forschungsgesellschaft, SalzburgAustria
  4. 4.Institute for Operations Research, ETH Zurich, ZurichSwitzerland

Personalised recommendations