Advertisement

Human-Guided Enhancement of a Stochastic Local Search: Visualization and Adjustment of 3D Pheromone

  • Jaya Sreevalsan-Nair
  • Meike Verhoeven
  • David L. Woodruff
  • Ingrid Hotz
  • Bernd Hamann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4638)

Abstract

In this paper, we describe user interaction with an optimization algorithm via a sophisticated visualization interface that we created for this purpose. Our primary interest is the tool itself. We demonstrate that a user wielding this tool can find ways to improve the performance of an ant colony optimization (ACO) algorithm as applied to a problem of finding 3D paths in the presence of impediments [14]. One part of a solution method can be to find a path on a grid. Of course, there are near linear time algorithms for the shortest path that have been applied to problems that are quite large. However, for a grid in three dimensions with arcs on the axes and diagonals, the problems can become extremely large as resolution is increased and heuristics thus make sense (see, e.g., [6] for state-of-the art algorithms where pre-processing is possible). Ant colony optimization (see, e.g., [4,5]) is ideally suited to such a problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brunner, J.D., Jablonowski, D.J., Bliss, B., Haber, R.B.: Vase: the visualization and application steering environment. In: Supercomputing 1993. Proceedings of the 1993 ACM/IEEE conference on Supercomputing, pp. 560–569. ACM Press, New York (1993)CrossRefGoogle Scholar
  2. 2.
    Bullnheimer, B., Hartl, R., Strauss, C.: A new rank based version of the ant system. Central European Journal for Operations Research and Economics 7, 25–38 (1999)zbMATHGoogle Scholar
  3. 3.
    Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in information visualization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)Google Scholar
  4. 4.
    Dorigo, M., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5, 137–172 (1999)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part B 26, 1–13 (1997)Google Scholar
  6. 6.
    Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A*: Efficient point-to-point shortest path algorithms, http://research.microsoft.com/research/pubs/view.aspx?type=Technical%20Report&id=986
  7. 7.
    Hammond, S.P.: Putting the user in the loop: On-line user adaption of genetic algorithms. In: Sarker, R., Reynolds, R., Abbass, H., Chen Tan, K., McKay, B., Essam, D., Gedeon, T. (eds.) Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, pp. 892–897. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  8. 8.
    Klau, G.W., Lesh, N.B., Marks, J.W., Mitzenmacher, M.: Human-guided tabu search. In: National Conference on Artificial Intelligence (AAAI), pp. 41–47 (2002)Google Scholar
  9. 9.
    Kreylos, O., Tesdall, A.M., Hamann, B., Hunter, J.K., Joy, K.I.: Interactive visualization and steering of CFD simulations. In: VISSYM 2002: Proceedings of the Symposium on Data Visualisation 2002, Aire-la-Ville, Switzerland, pp. 25–34. Eurographics Association (2002)Google Scholar
  10. 10.
    Lesh, N., Lopes, L.B., Marks, J., Mitzenmacher, M., Schafer, G.T.: Human-guided search for jobshop scheduling. In: 3rd International NASA Workshop on Planning and Scheduling for Space (October 2002)Google Scholar
  11. 11.
    Mulder, J.D., van Wijk, J.J., van Liere, R.: A survey of computational steering environments. Future Gener. Comput. Syst. 15(1), 119–129 (1999)CrossRefGoogle Scholar
  12. 12.
    Nakamichi, Y., Arita, T.: Diversity control in ant colony optimization. Artificial Life and Robotics 7, 1614–7456 (2004)CrossRefGoogle Scholar
  13. 13.
    Stützle, T., Hoos, H.: \(\mathcal{MAX-MIN}\) ant system. Future Generations Computer Systems Journal, 16 (2000)Google Scholar
  14. 14.
    Verhoeven, M., Woodruff, D.L.: Optimizing paths in the presence of spherical impediments. Technical report, GSM, UC Davis, Davis CA, 95616 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jaya Sreevalsan-Nair
    • 1
  • Meike Verhoeven
    • 1
  • David L. Woodruff
    • 1
  • Ingrid Hotz
    • 2
  • Bernd Hamann
    • 1
  1. 1.University of California, Davis, CAUSA
  2. 2.Konrad-Zuse-Zentrum für Informationstechnik, BerlinGermany

Personalised recommendations