EasySyn++: A Tool for Automatic Synthesis of Stochastic Local Search Algorithms

  • Luca Di Gaspero
  • Andrea Schaerf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4638)


We present a software tool, called EasySyn++, for the automatic synthesis of the source code for a set of stochastic local search (SLS) algorithms. EasySyn++ uses C++ as object language and relies on EasyLocal++, a C++ framework for the development of SLS algorithms. EasySyn++ is particularly suitable for the frequent case of having many neighborhood relations that are potentially useful.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flexible design of local search algorithms. Software—Practice and Experience 33(8), 733–765 (2003)CrossRefGoogle Scholar
  2. 2.
    Di Gaspero, L., Schaerf, A.: Writing local search algorithms using EasyLocal++. In: Voß, S., Woodruff, D.L. (eds.) Optimization Software Class Libraries. OR/CS series, pp. 155–176. Kluwer Academic Publishers, Boston (2002)Google Scholar
  3. 3.
    Di Gaspero, L., Roli, A., Schaerf, A.: EasyAnalyzer: an object-oriented framework for the experimental analysis of stochastic local search algorithms. In: Stützle, T., Birattari, M., Hoos, H. (eds.) Engineering Stochastic Local Search Algorithms (SLS-2007). LNCS, vol. 4638, pp. 76–90. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modeling and Algorithms 5(1), 65–89 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luca Di Gaspero
    • 1
  • Andrea Schaerf
    • 1
  1. 1.DIEGM, University of Udine, UdineItaly

Personalised recommendations