Skip to main content

Microdischarges in High Vacuum

  • Chapter
Vacuum Technology
  • 2673 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Microdischarges over Insulator Surfaces

  1. P. H. Gleichauf, “Electrical breakdown over insulators in high vacuum”, J. Appl. Phys. 22 (6), pp. 766–771 (1951).

    Article  ADS  Google Scholar 

  2. A. S. Pillai and R. Hackam, “Surface flashover of solid insulators in atmospheric air and in vacuum”, J. Appl. Phys. 58 (1), pp. 146–153 (1985).

    Article  ADS  Google Scholar 

  3. C. H. De Tourreil and K. D. Srivastava, “Mechanism of surface charging of high-voltage insulators in vacuum”, IEEE Transactions on Electrical Insulation EI-8 (1), pp. 17–21 (1973).

    Article  Google Scholar 

  4. T. S. Sudarshan and J. D. Cross, “DC electric-field modifications produced by solid insulators bridging a uniform-field vacuum gap”, IEEE Transactions on Electrical Insulation EI-8 (4), pp. 122–128 (1973).

    Article  Google Scholar 

  5. R. A. Anderson and J. P. Brainard, “Mechanism of pulsed surface flashover involving electron-stimulated desorption”, J. Appl. Phys. 51 (3), pp. 1414–1421 (1980).

    Article  ADS  Google Scholar 

  6. A. S. Pillai and R. Hackam, “Surface flashover of solid dielectric in vacuum”, J. Appl. Phys. 53 (4), pp. 2983–2987 (1982).

    Article  ADS  Google Scholar 

  7. J. D. Cross and T. S. Sudarshan, “The effect of cuprous oxide coatings on surface flashover of dielectric spacers in vacuum”, IEEE Transactions on Electrical Insulation. EI-9 (4), pp. 146–150 (1974).

    Article  Google Scholar 

  8. T. S. Sudarshan and J. D. Cross, “The effect of chromium oxide coatings on surface flashover of alumina spacers in vacuum”, IEEE Transactions on Electrical Insulation EI-11 (1), pp. 32–35 (1976).

    Article  Google Scholar 

  9. H. Watanabe, N. Yoshimura, S. Katoh, and N. Kobayashi, "Microdischarges on an electron gun under high vacuum", J. Vac. Sci. Technol. A 5 (1), pp. 92–97 (1987).

    Article  ADS  Google Scholar 

  10. Y. Saito, S. Anami, S. Michizono, N. Matuda, A. Kinbara, S. Kobayashi, “Breakdown of alumina rf windows and its inhibition”, T. IEE Japan, Vol. 114-A, No. 2, pp. 100–107 (1994) (in Japanese).

    Google Scholar 

  11. J. P. Shannon, S. F. Philp, and J. G. Trump, “Insulation of high voltage across solid insulators in vacuum”, J. Vac. Sci. Technol. 2 (5), pp. 234–239 (1965).

    Article  ADS  Google Scholar 

  12. A. Watson, “Pulsed flashover in vacuum”, J. Appl. Phys. 38 (5), pp. 2019–2023 (1967).

    Article  ADS  Google Scholar 

  13. O. Yamamoto, T. Hara, H. Matsuura, Y. Tanabe, and T. Konishi, “Effects of corrugated insulator on electrical insulation in vacuum”, Vacuum 47 (6–8), pp. 713–717 (1996).

    Article  Google Scholar 

  14. K. Nakanishi, Y. Shibuya, Y. Arahata, and T. Eura, “Surface flashovers along insulators under non-uniform electric fields in SF6 gas”, Transactions of The Institute of Electrical Engineers of Japan A: Publication of Fundamentals and Materials Society 102 (9), pp. 1–8 (1982) (in Japanese).

    Google Scholar 

  15. R. Hawley, “Solid insulators in vacuum: A review”, Vacuum 18 (7), pp. 383–390 (1968).

    Article  Google Scholar 

Microdischarges Between High-Voltage Electrodes

  1. H. C. Miller, “Surface flashover of insulators”, IEEE Transactions on Electrical Insulation 24 (5), pp. 765–786 (1989).

    Article  Google Scholar 

  2. L. Cranberg, “The initiation of electrical breakdown in vacuum”, J. Appl. Phys. 23 (5), pp. 518–522 (1952).

    Article  ADS  Google Scholar 

  3. P. A. Chatterton, M. M. Menon, and K. D. Srivastava, “Processes involved in the triggering of vacuum breakdown by low-velocity microparticles”, J. Appl. Phys. 43 (11), pp. 4536–4542 (1972).

    Article  ADS  Google Scholar 

  4. D. K. Davies, “The initiation of electrical breakdown in vacuum–A review”, J. Vac. Sci. Technol. 10(1), pp. 115–121 (1973).

    Article  ADS  Google Scholar 

  5. M. M. Menon and K. D. Srivastava, “Microparticle-initiated vacuum breakdown–some possible mechanisms”, J. Appl. Phys. 45 (9), pp. 3832–3835 (1974).

    Article  ADS  Google Scholar 

  6. D. K. Davies and M. A. Biondi, “Emission of electrode vapor resonance radiation at the onset of dc breakdown in vacuum”, J. Appl. Phys. 48 (10), pp. 4229–4233 (1977).

    Article  ADS  Google Scholar 

  7. N. K. Allen, B. M. Cox, and R. V. Latham, “The source of high-ubeta electron emission sites on broad-area high-voltage alloy electrodes”, J. Phys. D:Appl. Phys. 12 (6), pp. 969–978 (1979).

    Article  ADS  Google Scholar 

  8. W. T. Diamond, “New perspectives in vacuum high voltage insulation. I. The transition to field emission”, J. Vac. Sci. Technol. A 16 (2), pp. 707–719 (1998).

    Article  ADS  Google Scholar 

  9. W. T. Diamond, “New perspectives in vacuum high voltage insulation. II. Gas desorption”, J. Vac. Sci. Technol. A 16 (2), pp. 720–735 (1998).

    Article  ADS  Google Scholar 

  10. L. Cranberg and J. B. Henshall, “Small-aperture diaphragms in ion-accelerator tubes”, J. Appl. Phys. 30 (5), pp. 708–710 (1959).

    Article  ADS  Google Scholar 

  11. W. K. Mansfield, “Pre-breakdown conduction in continuously-pumped vacuum systems”, Brit. J. Appl. Phys. 11 Oct., pp. 454–461 (1960).

    Article  ADS  Google Scholar 

  12. H. P. S. Powell and P. A. Chatterton, “Prebreakdown conduction between vacuum insulated electrodes”, Vacuum 20 (10), pp. 419–429 (1970).

    Article  Google Scholar 

  13. B. A. Prichard Jr., “Mechanisms of electrical discharges in high vacuum at voltages up to 400 000 V”, J. Appl. Phys. 44 (10), pp. 4548–4554 (1973).

    Article  ADS  Google Scholar 

  14. A. Takaoka, K. Ura, and K. Yoshida, “Electron energy analysis of vacuum discharge in high-voltage accelerator tube”, J. Electron Microsc. 31 (3), pp. 217–225 (1982).

    Google Scholar 

  15. W. Peter, “Vacuum breakdown and surface coating of rf cavities”, J. Appl. Phys. 56 (5), pp. 1546–1547 (1984).

    Article  ADS  Google Scholar 

  16. H. C. Miller, “Influence of gap length on the field increase factor ubeta of an electrode projection (whisker)”, J. Appl. Phys. 55 (1), pp. 158–161 (1984).

    Article  ADS  Google Scholar 

  17. N. Yoshimura, H. Watanabe, S. Katoh, and N. Kobayashi, "Microdischarges on a high-voltage electron gun under high vacuum", Shinku (J. Vac. Soc. Japan) 30 (3), pp. 105–115 (1987) (in Japanese).

    Google Scholar 

  18. S. Kobayashi, Y. Hashimoto, M. Maeyama, Y. Saito, and Y. Nagai, “Electrical breakdown strength of oxygen-free copper electrodes under surface and bulk treatment conditions”, Vacuum 47 (6–8), pp. 745–747 (1996).

    Article  Google Scholar 

  19. A. van Oostrom and L. Augustus, “Electrical breakdown between stainless-steel electrodes in vacuum”, Vacuum 32 (3), pp. 127–135 (1982).

    Article  Google Scholar 

Other Articles

  1. J. P. Vigouroux, C. Le. Gressus, J. P. Duraud, “Electrical surface breakdown: Secondary electron emission and electron spectroscopy of insulators”, Scanning Electron Microscopy/1985/II, pp. 513–520.

    Google Scholar 

  2. C. Biscardi, H. Hseuh, and M. Mapes, “Application of porcelain enamel as an ultra-high-vacuum-compatible electrical insulator”, J. Vac. Sci. Technol. A 18 (4), pp. 1751–1754 (2000).

    Article  ADS  Google Scholar 

  3. H. C. Miller and E. J. Furno, “The effect of Mn/Ti surface treatment on voltage-holdoff performance of alumina insulators in vacuum”, J. Appl. Phys. 49 (11), pp. 5416–5420 (1978).

    Article  ADS  Google Scholar 

  4. C. Biscardi, H. Hseuh, and M. Mapes, “Application of porcelain enamel as an ultra-high-vacuum-compatible electrical insulator”, J. Vac. Sci. Technol. A 18 (4), pp. 1751–1754 (2000).

    Article  ADS  Google Scholar 

  5. S. Michizono, Y. Saito, S. Anami, and A. Kinbara, “Multipactor phenomenon observed at high-power rf windows”, Shinku (J. Vac. Soc. Japan) 37 (3), pp. 261–263 (1994) (in Japanese).

    Google Scholar 

  6. T. Ishii, S. Kobayashi, Tumiran, M. Maeyama, and Y. Saito, “Studies on the changes of alumina surface state by vacuum surface flashover with cathode luminescence spectroscopy”, Shinku (J. Vac. Soc. Japan) 38 (3), pp. 299–302 (1995) (in Japanese).

    Google Scholar 

  7. Tumiran, S. Kobayashi, H. Imada, M. Maeyama, T. Ishii, and Y. Saito, “The measurement of charge distribution on alumina surface after voltage application in vacuum”, Shinku (J. Vac. Soc. Japan) 38 (3), pp. 307–310 (1995) (in Japanese).

    Google Scholar 

  8. H. Kawai, H. Matsuura, S. Michizono, Y. Saito, and A. Inagaki, “Influence of surface treatment on secondary electron emission of alumina ceramics”, Shinku (J. Vac. Soc. Japan) 36 (3), pp. 256–259 (1993) (in Japanese).

    Google Scholar 

  9. S. Michizono, Y. Saito, S. Anami, and A. Kinbara, “Dielectric property of high-power rf window and its breakdown phenomena”, Shinku J. Vac. Soc. Japan) 36 (3), pp. 260–262 (1993) (in Japanese).

    Google Scholar 

  10. S. Michizono, Y. Saito, T. Sato, and S. Kobayashi, “Surface charging of rf windows”, Shinku (J. Vac. Soc. Japan) 41 (3), pp. 231–234 (1998) (in Japanese).

    Google Scholar 

  11. T. Sugimoto, S. Michizono, Y. Saito, and S. Kobayashi, “Residual stresses of aluminas and their surface flashover voltages in vacuum”, Shinku (J. Vac. Soc. Japan) 41 (3), pp. 235–238 (1998) (in Japanese).

    Google Scholar 

  12. A. K. Chakrabarti and P. A. Chatterton, “Microparticle trigger discharges and impact damage in a high-voltage vacuum insulated gap”, J. Appl. Phys. 47 (12), pp. 5320–5328 (1976).

    Article  ADS  Google Scholar 

  13. S. Kobayashi, Y. Hashimoto, Y. Saito, Y. Yamamoto, and Y. Nagai, “Vacuum breakdown properties of annealed oxygen free copper electrodes”, Shinku (J. Vac. Soc. Japan) 37 (3), pp. 258–260 (1994).

    Google Scholar 

  14. S. Kobayashi, Y. Hashimoto, Y. Saito, Y. Yamamoto, Y. Nagai, K. Takeuchi, and T. Sugano, “Electrical breakdown strength of vacuum gaps between vacuum degassed oxygen-free copper electrodes machined by diamond turning for mirror finish”, Shinku (J. Vac. Soc. Japan) 37 (3), pp. 289–291 (1994).

    Google Scholar 

  15. Y. Hashimoto, S. Kobayashi, Y. Saito, K. Takeuchi, T. Sugano, and Y. Nagai, “Vacuum breakdown properties of vacuum gaps consist of oxygen-free copper electrodes machined by diamond turning for mirror finish”, Shinku (J. Vac. Soc. Japan) 38 (3), pp. 303–306 (1995).

    Google Scholar 

  16. A. Iwai, S. Kobayashi, and Y. Saito, “Charges in copper electrode surface conditions caused by breakdown in ultra-high vacuum”, Shinku (J. Vac. Soc. Japan) 41 (3), pp. 227–230 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshimura, N. (2008). Microdischarges in High Vacuum. In: Vacuum Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74433-7_7

Download citation

Publish with us

Policies and ethics