Skip to main content

Vacuum Gauges

  • Chapter
Vacuum Technology
  • 2762 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Lafferty, “Review of pressure measurement techniques for ultrahigh vacua”, J. Vac. Sci. Technol. 9(1), pp. 101–107 (1972).

    ADS  Google Scholar 

Mechanical Gauges

  1. N. G. Utterback and T. Griffith, Jr., “Reliable submicron pressure readings with capacitance manometer”, Rev. Sci. Instrum. 37 (7), pp. 866–870 (1966).

    ADS  Google Scholar 

Thermal Conductivity Gauges

  1. J. H. Leck, “The high temperature Pirani gauge”, J. Sci. Instrum. 29, pp. 258–263 (1952).

    ADS  Google Scholar 

  2. J. W. Beams, D. M. Spitzer, Jr., and J. P. Wade, Jr., “Spinning rotor pressure gauge”, Rev. Sci. Instrum. 33 (2), pp. 151–155 (1962).

    ADS  Google Scholar 

  3. J. K. Fremerey, “High vacuum gas friction manometer”, J. Vac. Sci. Technol. 9 (1), pp. 108–111 (1972).

    ADS  Google Scholar 

  4. P. Takasakul, J. A. Bentz, R. V. Tompson, and S. K. Loyalka, “The spinning rotor gauge: Measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients”, J. Vac. Sci. Technol. A 14 (5), pp. 2946–2952 (1996).

    ADS  Google Scholar 

  5. K. Kokubun, M. Hirata, H. Murakami, Y. Toda, and M. Ono, “A bending and stretching mode crystal oscillator as a friction vacuum gauge”, Vacuum 34 (8/9), pp. 731–735 (1984).

    Google Scholar 

  6. M. Ono, M. Hirata, K. Kokubun, H. Murakami, F. Tamura, H. Hojo, H. Kawashima, and H. Kyogoku, “Design and performance of a qualtz oscillator vacuum gauge with a controller”, J. Vac. Sci. Technol. A 3(3), pp. 1746–1749 (1985).

    ADS  Google Scholar 

Ionization Gauges

  1. G. K. T. Conn and H. N. Daglish, “Cold cathode ionization gauges for the measurement of low pressures”, Vacuum 3 (1), pp. 24–34 (1953).

    Google Scholar 

  2. D. Alpert, “New developments in the production and measurement of ultra high vacuum”, J. Appl. Phys. 24 (7), pp. 860–876 (1953).

    ADS  Google Scholar 

  3. J. H. Singleton, “Practical guide to the use of Bayard-Alpert ionization gauges”, J. Vac. Sci. Technol. A 19 (4), pp. 1712–1719 (2001).

    ADS  Google Scholar 

  4. N. Yoshimura, H. Oikawa, and O. Mikami, “Measurement of outgassing rates from materials by differential pressure rise method”, Shinku (J. Vac. Soc. Japan) 13 (1), pp. 23–28 (1970) (in Japanese).

    Google Scholar 

  5. J. P. Hobson, “The pumping of nitrogen by a Bayard-Alpert ionization gauge in an ultra-high-vacuum system”, Vacuum 11, pp. 16–25 (1961).

    Google Scholar 

  6. G. F. Weston, “Measurement of ultra-high vacuum. Part I. Total pressure measurements”, Vacuum 29 (8/9), pp. 277–291 (1979).

    Google Scholar 

  7. F. Nakao, “Determination of the ionization gauge sensitivity using the relative ionization cross-section”, Vacuum 25 (9/10), pp. 431–435 (1975).

    Google Scholar 

  8. P. A. Redhead, “New hot-filament ionization gauge with low residual current”, J. Vac. Sci. Technol. 3 (4), pp. 173–180 (1966).

    ADS  Google Scholar 

  9. U. Beeck and G. Reich, “Comparison of the pressure indication of a Bayard-Alpert and an extractor gauge”, J. Vac. Sci. Technol. 9(1), pp. 126–132 (1972).

    ADS  Google Scholar 

  10. J. M. Lafferty, “Hot-cathode magnetron ionization gauge for the measurement of ultrahigh vacua”, J. Appl. Phys. 32, (3) pp. 424–434 (1961).

    ADS  Google Scholar 

  11. J. M. Lafferty, “Hot-cathode magnetron ionization gauge with an electron multiplier ion detector for the measurement of extreme ultra-high vacua”, Rev. Sci. Instrum. 34 (5), pp. 467–476 (1963).

    ADS  Google Scholar 

  12. R. N. Peacock, N. T. Peacock, and D. S. Hauschulz, “Comparison of hot cathode and cold cathode ionization gauges”, J. Vac. Sci. Technol. A 9(3), pp. 1977–1985 (1991).

    ADS  Google Scholar 

  13. K. M. Welch, L. A. Smart, and R. J. Todd, “Enhanced ignition of cold cathode gauges through the use of radioactive Isotopes”, J. Vac. Sci. Technol. A 14(3), pp. 1288–1291 (1996).

    ADS  Google Scholar 

  14. B. R. Kendall and E. Drubetsky, “Starting delays in cold-cathode gauges at low pressures”, J. Vac. Sci. Technol. A 14(3), pp. 1292–1296 (1996).

    ADS  Google Scholar 

  15. G. J. Schulz and A. V. Phelps, “Ionization gauges for measuring pressures up to the millimeter range”, Rev. Sci. Instrum. 28 (12), pp. 1051–1054 (1957).

    ADS  Google Scholar 

Partial Pressure Gauges

  1. D. Lichtman, “Perspectives on residual gas analysis”, J. Vac. Sci. Technol. A 2(2), pp. 200–205 (1984).

    ADS  Google Scholar 

  2. G. F. Weston, “Measurement of ultra-high vacuum. Part 2. Partial pressure measurements”, Vacuum 30 (2), pp. 49–67 (1980).

    Google Scholar 

  3. N. Yoshimura, H. Hirano, K. Ohara, and I. Ando, “Outgassing characteristics of an electropolished stainless-steel pipe with an operating extractor ionization gauge”, J. Vac. Sci. Technol. A 9 (4), pp. 2315–2318 (1991).

    ADS  Google Scholar 

  4. N. Yoshimura, T. Sato, S. Adachi, and T. Kanazawa, “Outgassing characteristics and microstructure of an electropolished stainless steel surface”, J. Vac. Sci. Technol. A 8 (2), pp. 924–929 (1990).

    ADS  Google Scholar 

  5. F. Nakao, “Simplified methods for the calculation of partial pressure using the relative ionization cross-section”, Vacuum 25 (5), pp. 201–209 (1975).

    Google Scholar 

Development of New Gauges for XHV

  1. F. Watanabe, “Point collector ionization gauge with spherical grid for measuring pressures below 10-11 Pa”, J. Vac. Sci. Technol. A 5(2), pp. 242–248 (1987).

    ADS  Google Scholar 

  2. F. Watanabe, “Ion spectroscopy gauge: Total pressure measurement down to 10-12 Pa with discrimination against electron-stimulated-desorption ions”, J. Vac. Sci. Technol. A 10(5), pp. 3333–3339 (1992).

    ADS  Google Scholar 

  3. F. Watanabe, “Total pressure measurement down to 10-12 Pa without electron stimulated desorption ion errors”, J. Vac. Sci. Technol. A 11(4), pp. 1620–1626 (1993).

    ADS  Google Scholar 

  4. C. Ohshima and A. Otuka, “Performance of an ionization gauge with a large-angle ion deflector. I. Total pressure measurement in extreme high vacuum”, J. Vac. Sci. Technol. A 12(6), pp. 3233–3238 (1994).

    ADS  Google Scholar 

  5. H. Akimichi, T. Arai, K. Takeuchi, Y. Tuzi, and I. Arakawa, “Calibration of an axial symmetric transmission gauge in ultrahigh and extreme high vacuum”, J. Vac. Sci. Technol. A 15(3), pp. 753–758 (1997).

    ADS  Google Scholar 

  6. H. Akimichi, K. Takeuchi, Y. Tuzi, and I. Arakawa, “Long term behavior of an axial-symmetric transmission gauge”, J. Vac. Sci. Technol. A 17(4), pp. 2021–2025 (1999).

    ADS  Google Scholar 

  7. N. Takahashi, J. Yuyama, Y. Tuzi, H. Akimichi, and I. Arakawa, “Axial-symmetric transmission gauge: Extension of its pressure measuring range and reduction of the electron stimulated desorption ion effect in ultrahigh vacuum”, J. Vac. Sci. Technol. A 23(3), pp. 554–558 (2005).

    ADS  Google Scholar 

  8. F. Watanabe and M. Suemitsu, “Separation of electron-stimulated-desorption neutrals from outgassing originating from the grid surface of emission-controlled gauges: Studies with a heated-grid gauge”, J. Vac. Sci. Technol. A 17(6), pp. 3467–3472 (1999).

    ADS  Google Scholar 

  9. F. Watanabe and A. Kasai, “Low outgassing residual gas analyzer with a beryllium-copper-alloy-flanged ion source”, J. Vac. Sci. Technol. A 13(2), pp. 497–500 (1995).

    ADS  Google Scholar 

  10. T. Satou and C. Oshima, “Performance of an ionization gauge with a large-angle ion deflector. II. Mass analysis of residual gas and electron stimulated desorption ions”, J. Vac. Sci. Technol. A 13(2), pp. 448–450 (1995).

    ADS  Google Scholar 

  11. C. Dong and G. R. Myneni, “Field emitter based extractor gauges and residual gas analyzers”, J. Vac. Sci. Technol. A 17(4), pp. 2026–2033 (1999).

    ADS  Google Scholar 

  12. N. Takahashi, T. Hayashi, H. Akimichi, and Y. Tuzi, ”Development of the quadrupole mass spectrometer with the Bessel-Box type energy analyzer: Function of the energy analyzer in the partial pressure measurements”, J. Vac. Sci. Technol. A 19(4), pp. 1688–1692 (2001).

    ADS  Google Scholar 

  13. F. Watanabe, “Investigation and reduction of spurious peaks caused by electron-stimulated desorption and outgassing by means of a grid heating method in a hot-cathode quadrupole residual gas analyzer”, J. Vac. Sci. Technol. A 20(4), pp. 1222–1229 (2002).

    ADS  Google Scholar 

  14. St. Wilfert and Chr. Edelmann, “Miniaturized vacuum gauges”, J. Vac. Sci. Technol. A 22(2), pp. 309–320 (2004).

    ADS  Google Scholar 

Other Articles

  1. J. Dimeff, J. W. Lane, and G. W. Coon, “New wid-range pressure transducer”, Rev. Sci. Instrum. 33 (8), pp. 804–811 (1962).

    ADS  Google Scholar 

  2. G. C. Baldwin and M. R. Gaerttner, “Thermal transpiration error in absolute pressure measurement with capacitance manometers”, J. Vac. Sci. Technol. 10(1), pp. 215–217 (1973).

    ADS  Google Scholar 

Thermal Conductivity Gauges

  1. B. G. Dickins, “The effect of accommodation on heat conduction through gases”, Proc. R. Soc. London, Ser. A 143, pp. 517–540 (1933).

    ADS  Google Scholar 

  2. J. H. Leck and C. S. Martin, “A Pirani gauge for operation up to a pressure of 10 mm of mercury”, J. Sci. Instrum. 33, May, pp. 181–183 (1956).

    ADS  Google Scholar 

  3. J.-S. Shie, Bruce C. S. Chou, and Y.-M. Chen, “High performance Pirani vacuum gauge”, J. Vac. Sci. Technol. A 13(6), pp. 2972–2979 (1995).

    ADS  Google Scholar 

  4. Vincent S. Smentkowski and John T. Yates, Jr., “Universal calibration of W5%Re vs. W26%Re (type-C) thermocouples in the temperature range 32–2588 K”, J. Vac. Sci. Technol. A 14(1), pp. 260–265 (1996).

    ADS  Google Scholar 

  5. W. J. Alvesteffer, D. C. Jacobs, and D. H. Baker, “Miniaturized thin film thermal vacuum sensor”, J. Vac. Sci. Technol. A 13(6), pp. 2980–2985 (1995).

    ADS  Google Scholar 

  6. O. Paul, O. Brand, R. Lenggenhager, and H. Baltes, “Vacuum gauging with complementary metal-oxide-semiconductor microsensors”, J. Vac. Sci. Technol. A 13(3), pp. 503–508 (1995).

    ADS  Google Scholar 

  7. R. E. Ellefson and A. P. Miiller, “Recommended practice for calibrating vacuum gauges of the thermal conductivity type”, J. Vac. Sci. Technol. A 18(5), pp. 2568–2577 (2000).

    ADS  Google Scholar 

Viscosity Gauges

  1. K. Kokubun, M. Hirata, M. Ono, H. Murakami, and Y. Toda, “Frequency dependence of a qualtz oscillator on gas pressure”, J. Vac. Sci. Technol. A 3(6), pp. 2184–2187 (1985).

    ADS  Google Scholar 

  2. J. K. N. Sharma, P. Mohan, and D. R. Sharma, “Comparison of two primary pressure standards using spinning rotor gauges”, J. Vac. Sci. Technol. A 8(2), pp. 941–947 (1990).

    ADS  Google Scholar 

  3. S.-H. Choi, Sharrill Dittmann, and Charles R. Tilford, “Stabilization techniques for spinning rotor gage residual drag”, J. Vac. Sci. Technol. A 8(6), pp. 4079–4085 (1990).

    ADS  Google Scholar 

  4. A. Chambers, A. D. Chew, and A. P. Troup, “Rotating disk gauge for absolute total pressure measurement in high vacuum”, J. Vac. Sci. Technol. A 10(4), pp. 2655–2660 (1992).

    ADS  Google Scholar 

  5. W. Jitschin, K. Jousten, and D. Wandrey, “Design and evaluation of a primary high-vacuum standard”, J. Vac. Sci. Technol. A 10(5), pp. 3344–3351 (1992).

    ADS  Google Scholar 

  6. S. K. Loyalka, “Theory of the spinning rotor gauge in the slip regime”, J. Vac. Sci. Technol. A 14(5), pp. 2940–2945 (1996).

    ADS  Google Scholar 

  7. P. D. Levine and J. R. Sweda, “A primary standard high vacuum calibration station for industrial applications”, J. Vac. Sci. Technol. A 14(3), pp. 1297–1302 (1996).

    ADS  Google Scholar 

  8. C. Boffito, M. Moraja, and G. Pastore, “Spinning rotor gauge in the range from 10-4 Pa to atmospheric pressure”, J. Vac. Sci. Technol. A 15(4), pp. 2391–2394 (1997).

    ADS  Google Scholar 

  9. K. Jousten, A. R. Filippelli, C. R. Tilford, and F. J. Redgrave, “Comparison of the standards for high and ultrahigh vacuum at three national standards laboratories”, J. Vac. Sci. Technol. A 15(4), pp. 2395–2406 (1997).

    ADS  Google Scholar 

  10. J. Šetina, “Two point calibration scheme for the linearization of the spinning rotor gauge at transition regime pressures”, J. Vac. Sci. Technol. A 17(4), pp. 2086–2092 (1999).

    ADS  Google Scholar 

Ionization Gauges

  1. P. A. Redhead, “Modulated Bayard-Alpert Gauge” Rev. Sci. Instrum. 31 (3), pp. 343–344 (1960).

    ADS  Google Scholar 

  2. J. P. Hobson and P. A. Redhead, “Operation of an inverted-magnetron gauge in the pressure range 10-3–10-12 mmHg”, Can. J. Phys. 36, pp. 271–288 (1958).

    ADS  Google Scholar 

  3. P. A. Redhead, “Magnetron gauge: A cold-cathode vacuum gage”, Can. J. Phys. 37, 1260–1271 (1959).

    ADS  Google Scholar 

  4. N. Yoshimura, H. Oikawa, and O. Mikami, “Measurement of outgassing rates from materials by differential pressure rise method”, Shinku (J. Vac. Soc. Japan) 13 (1), pp. 23–28 (1970) (in Japanese).

    Google Scholar 

  5. W. Jitschin, “Accuracy of vacuum gauges”, J. Vac. Sci. Technol. A 8(2), pp. 948–956 (1990).

    ADS  Google Scholar 

  6. S. Ruthberg, “Standards and vacuum measurement accuracy”, J. Vac. Sci. Technol. 9(1), pp. 186–195 (1972).

    ADS  Google Scholar 

  7. P. A. Redhead, “Errors in the measurement of pressure with ionization gauges”, 1960 7th National Symposium on Vacuum Technology Transactions (Pergamon Press, 1961), pp.108–111.

    Google Scholar 

  8. G. Barnes, “Erroneous readings of large magnitude in a Bayard-Alpert ionization gauge and their probable cause”, Rev. Sci. Instrum. 31 (10), pp. 1121–1127 (1960).

    ADS  MathSciNet  Google Scholar 

  9. T. E. Hartman, “Ultra-High vacuum use of Bayard-Alpert ionization gauges”, Rev. Sci. Instrum. 34 (3), pp. 281–285 (1963).

    ADS  Google Scholar 

  10. T. E. Hartman, “Anomalous residual currents in the ultrahigh vacuum use of Bayard-Alpert ionization gauges”, Rev. Sci. Instrum. 34 (11), pp. 1190–1195 (1963).

    ADS  Google Scholar 

  11. P. A. Redhead, “The sensitivity of Bayard-Alpert gauges”, J. Vac. Sci. Technol. 6(5), pp. 848–854 (1969).

    ADS  Google Scholar 

  12. G. Comsa, “The behavior of ions in a BAG structure”, J. Vac. Sci. Technol. 8(4), pp. 582–589 (1971).

    ADS  Google Scholar 

  13. G. Comsa, “Ion collection in Bayard-Alpert gauges”, J. Vac. Sci. Technol. 9(1), pp. 117–121 (1972).

    ADS  Google Scholar 

  14. J. R. Young, “Measuring hydrocarbon gas pressure with an ionization gauge”, J. Vac. Sci. Technol. 10(1), pp. 212–214 (1973).

    ADS  Google Scholar 

  15. R. Holanda, “Investigation of the sensitivity of ionization-type vacuum gauges”, J. Vac. Sci. Technol. 10(6), pp. 1133–1139 (1973).

    ADS  Google Scholar 

  16. J. E. Bartmess and R. M. Georgiadis, “Empirical methods for determination of ionization gauge relative sensitivities for different gases”, Vacuum 33 (3), pp. 149–153 (1983).

    Google Scholar 

  17. C. R. Tilford, “Reliability of high vacuum measurements”, J. Vac. Sci. Technol. A 1(2), pp. 152–162 (1983).

    ADS  Google Scholar 

  18. D. G. Bills, P. C. Arnord, S. L. Dodgen, and C. B. Van Cleve, “New ionization gauge geometries providing stable and reproducible sensitivities”, J. Vac. Sci. Technol. A 2(2), pp. 163–167 (1984).

    ADS  Google Scholar 

  19. P. C. Arnold and D. G. Bills, “Causes of unstable and nonreproducible sensitivities in Bayard-Alpert ionization gauges”, J. Vac. Sci. Technol. A 2(2), pp. 159–162 (1984).

    ADS  Google Scholar 

  20. H. Gentsch, J. Tewes, and G. Messer, “An improved ion gauge with gold coated electrodes for reliable operation in reactive gases and for use as reference standard”, Vacuum 35 (3), pp. 137–140 (1985).

    Google Scholar 

  21. N. T. Peacock, “Measurement of x-ray currents in Bayard-Alpert type gauges”, J. Vac. Sci. Technol. A 10(4), pp. 2674–2678 (1992).

    ADS  Google Scholar 

  22. M. Saitoh, K. Shimura, T. Iwata, T. Momose, and H. Ishimaru, “Influence of vacuum gauges on outgassing rate measurements”, J. Vac. Sci. Technol. A 11(5), pp. 2816–2821 (1993).

    ADS  Google Scholar 

  23. P. C. Arnold and S. C. Borichevsky, “Nonstable behavior of widely used ionization gauges”, J. Vac. Sci. Technol. A 12(2), pp. 568–573 (1994).

    ADS  Google Scholar 

  24. P. C. Arnold, D. G. Bills, M. D. Borenstein, and S. C. Borichevsky, “Stable and reproducible Bayard-Alpert ionization gauge”, J. Vac. Sci. Technol. A 12(2), pp. 580–586 (1994).

    ADS  Google Scholar 

  25. D. G. Bills, “Causes of nonstability and nonreproducibility in widely used Bayard-Alpert ionization gauges”, J. Vac. Sci. Technol. A 12(2), pp. 574–579 (1994).

    ADS  Google Scholar 

  26. C. R. Tilford, A. R. Filippelli, and P. J. Abbott, “Comments on the stability of Bayard-Alpert ionization gages”, J. Vac. Sci. Technol. A 13(2), pp. 485–487 (1995).

    ADS  Google Scholar 

  27. C. M. Spencer and D. Stäheli, “High-stability controller for Bayard-Alpert ionization gauges”, J. Vac. Sci. Technol. 5(4), pp. 105–108 (1968).

    ADS  Google Scholar 

  28. A. R. Filippelli and P. J. Abbott, “Long-term stability of Bayard-Alpert gauge performance: Results obtained from repeated calibrations against the National Institute of Standards and Technology primary vacuum standard”, J. Vac. Sci. Technol. A 13(5), pp. 2582–2586 (1995).

    ADS  Google Scholar 

  29. A. R. Filippelli, “Influence of envelope geometry on the sensitivity of “nude” ionization gauges”, J. Vac. Sci. Technol. A 14(5), pp. 2953–2957 (1996).

    ADS  Google Scholar 

  30. B. R. F. Kendall and E. Drubetsky, “Stable cancellation of x-ray errors in Bayard-Alpert gauges”, J. Vac. Sci. Technol. A 16(3), pp. 1163–1168 (1998).

    ADS  Google Scholar 

  31. P. A. Redhead and J. P. Hobson, “Total pressure measurements below 10-10 Torr with non-magnetic ionization gauges”, Brit. J. Appl. Phys. 16, pp. 1555–1566 (1965).

    ADS  Google Scholar 

  32. A. Van Oostrom, “Modulation of Bayard-Alpert ionization gauges with grid end-caps”, J. Sci. Instrum. 44, pp. 927–930 (1967).

    ADS  Google Scholar 

  33. P. J. Szwemin, “Behavior of the Bayard-Alpert gauge with cage modulator operating without electron current”, J. Vac. Sci. Technol. 9(1), pp. 122–125 (1972).

    ADS  Google Scholar 

  34. L. G. Pittaway, “Modulation of the desorbed ion current in Bayard-Alpert gauges”, J. Vac. Sci. Technol. 10(4), pp. 507–512 (1973).

    ADS  Google Scholar 

  35. A. Barz and P. Kocian, “Extractor gauge as a nude system”, J. Vac. Sci. Technol. 7(1), pp. 200–203 (1970).

    ADS  Google Scholar 

  36. D. Blechschmidt, “A miniature extractor gauge for the UHV”, J. Vac. Sci. Technol. 11(6), pp. 1160–1165 (1974).

    ADS  Google Scholar 

  37. H. Gentsch, “Inertes Ionisationsvakuummeter mit extrahierendem Kollektor (EXKOLL)”, Vakuum-Technik 36 (3), pp. 67–74 (1987).

    Google Scholar 

  38. L. T. Melfi, Jr., “Buried collector gauge for measurements in the 10-11 Torr pressure range”, J. Vac. Sci. Technol. 6(2), pp. 322–325 (1969).

    ADS  Google Scholar 

  39. G. A. Beitel and C. M. Gosselin, “Performance of a modified buried collector gauge”, J. Vac. Sci. Technol. 7(6), pp. 580–585 (1970).

    ADS  Google Scholar 

  40. J. H. Leck, “The measurement of total pressure in the range 10-8–10-12 Torr”, Vacuum 20 (9), pp. 369–372 (1970).

    Google Scholar 

  41. K. Close and J. Yarwood, “The measurement of low gas pressures in terms of ion currents”, Vacuum 20 (2), pp. 56–64 (1970).

    Google Scholar 

  42. D. Blechschmidt, “An ionization gauge using a channel electron multiplier for pressures below 10-12 Torr”, J. Vac. Sci. Technol. 10(2), pp. 376–380 (1973).

    ADS  Google Scholar 

  43. T. Satoh and C. Ohshima, “Characteristic of electron emission and gas desorption from the impregnated cathode of ionization gauge for an extremely high vacuum”, Shinku (J. Vac. Soc. Japan) 37 (2), pp. 77–79 (1994).

    Google Scholar 

  44. N. Gotoh, T. Momose, H. Ishimaru, and R. Paitich, “Residual current of the modified Lafferty gauge”, J. Vac. Sci. Technol. A 13(5), pp. 2574–2578 (1995).

    ADS  Google Scholar 

  45. B. R. F. Kendall, “Ionization gauge errors at low pressures”, J. Vac. Sci. Technol. A 17(4), pp. 2041–2049 (1999).

    ADS  Google Scholar 

  46. E. H. Chao, S. F. Paul, and R. C. Davidson, “Dynamics of the m=1 diocotron mode in the electron diffusion gauge experiment”, J. Vac. Sci. Technol. A 17(4), pp. 2034–2040 (1999).

    ADS  Google Scholar 

  47. J. S. Cleaver, “A new high pressure ionization gauge”, J. Sci. Instrum. 44, pp. 969–972 (1967).

    ADS  Google Scholar 

  48. P. S. Choumoff and B. Iapteff, “High pressure ionization gauge for calibration in the 10-7–10-1 Torr Range”, Proc. 6th Internl. Vacuum Congr. 1974, Japan. J. Appl. Phys. Suppl. 2, Pt. 1, 1974, pp. 143–146.

    Google Scholar 

  49. N. Ohsako, “A new wide-range B-A gauge from UHV to 10-1 Torr”, J. Vac. Sci. Technol. 20(4), pp. 1153–1155 (1982).

    ADS  Google Scholar 

  50. F. M. Penning and K. Nienhuis, “Construction and applications of a new design of the philips vacuum gauge”, Philips Technical Review 11 (4), pp. 116–122 (1949).

    Google Scholar 

  51. J. R. Young, “Pressure dependence of the axial ion current in a Penning discharge”, J. Vac. Sci. Technol. 5(4), pp. 102–104 (1968).

    ADS  Google Scholar 

  52. L. De Chernatony and D. J. Crawley, “UHV measurements by cold cathode gauges”, Vacuum 20 (9), pp. 389–391 (1970).

    Google Scholar 

  53. I. Bello, S. Bederka, and L. Haworth, “Optical method for low pressure measurements”, J. Vac. Sci. Technol. A 13(3), pp. 509–514 (1995).

    ADS  Google Scholar 

  54. M. G. Buehler, L. D. Bell, and M. H. Hecht, “Alpha-particle gas-pressure sensor”, J. Vac. Sci. Technol. A 14(3), pp. 1281–1287 (1996).

    ADS  Google Scholar 

  55. B. R. Kendall and E. Drubetsky, “Cold cathode gauges for ultrahigh vacuum measurements”, J. Vac. Sci. Technol. A 15(3), pp. 740–746 (1997).

    ADS  Google Scholar 

  56. M. Hirata, “Precise gauge calibration of means of comparison method using a personal computer”, Shinku (J. Vac. Soc. Japan) 36 (4), pp. 420–423 (1993).

    MathSciNet  Google Scholar 

  57. I. Arakawa, M. Kim, and Y. Tuji, “Unidirectional vacuum gauge by means of detecting excited neutrals”, J. Vac. Sci. Technol. A 2 (2), pp. 168–171 (1984).

    ADS  Google Scholar 

  58. H. Saeki, T. Magome, and Y. Shoji, “Performance of a hot-cathode-ionization-gauge head with correcting electrode and shield tube, operated with an automated-pressure-compensating circuit in a synchrotron radiation environment”, J. Vac. Sci. Technol. A 24 (4), pp. 1148–1150 (2006).

    Google Scholar 

  59. J. T. Tate and P. T. Smith, “The efficiencies of ionization and ionization potentials of various gases under electron impact”, Phys. Rev. 39, pp. 270–276 (1932).

    ADS  Google Scholar 

Residual Gas Analyzens

  1. P. della Porta, “Present knowledge on residual gases in electron tubes”, Advances in Electron Tube Techniques 2, pp. 55–69 (1962).

    Google Scholar 

  2. R. D. Craig and E. H. Harden, “The interpretation of mass spectra in vacuum measurement”, Vacuum 16 (2), pp. 67–73 (1966).

    Google Scholar 

  3. H. Hoch, “Total- und Partialdruckmessungen bei Drücken zwischen 2× 10-10 und 10-12 Torr”, Vakuum-Technik 16 (1/2), pp. 8–13 (1967).

    Google Scholar 

  4. M. Kobayashi and Y. Tuzi, “Performance of a directional detector of molecular density”, J. Vac. Sci. Technol. 16(2), pp. 685–688 (1979).

    ADS  Google Scholar 

  5. K. F. Poulter, “Effect of gas composition on vacuum measurement”, J. Vac. Sci. Technol. A 2(2), pp. 150–158 (1984).

    ADS  Google Scholar 

  6. F. Watanabe and H. Ishimaru, “Ion current modulation of a residual gas analyzer”, J. Vac. Sci. Technol. A 3(6), pp. 2192–2195 (1985).

    ADS  Google Scholar 

  7. W. K. Huber, N. Müller, and G. Rettinghaus, “Total and partial pressure measurement in the low 10-12 mbar range”, Vacuum 41 (7–9), pp. 2103–2105 (1990).

    Google Scholar 

  8. P. A. Redhead, “Measurement of residual currents in ionization gauges and residual gas analyzers”, J. Vac. Sci. Technol. A 10(4), pp. 2665–2673 (1992).

    ADS  Google Scholar 

  9. J. A. Basford, M. D. Boeckmann, R. E. Ellefson, A. R. Filippelli, D. H. Holkeboer, L. Lieszkovszky, and C. M. Stupak, “Recommended practice for the calibration of mass spectrometers for partial pressure analysis”, J. Vac. Sci. Technol. A 11(3), pp. A22–A40 (1993).

    Google Scholar 

  10. R. J. Ferran and S. Boumsellek, “High-pressure effects in miniature arrays of quadrupole analyzers for residual gas analysis from 10-9 to 10-2 Torr”, J. Vac. Sci. Technol. A 14(3), pp. 1258–1265 (1996).

    ADS  Google Scholar 

  11. S, Watanabe, M. Aono, and S. Kato, “Reduction of outgassing rate from residual gas analyzers for extreme high vacuum measurements”, J. Vac. Sci. Technol. A 14(6), pp. 3261–3266 (1996).

    ADS  Google Scholar 

  12. N. Nagayama, K. Araki, and H. Mima, “The difference of the pattern coefficient of the quadrupole mass spectrometer”, Shinku (J. Vac. Soc. Japan) 40 (8), pp. 650–654 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshimura, N. (2008). Vacuum Gauges. In: Vacuum Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74433-7_6

Download citation

Publish with us

Policies and ethics