Skip to main content

Vacuum Pumps

  • Chapter
Book cover Vacuum Technology
  • 2839 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Mechanical Pump

  1. H. Hamacher, Vacuum 32, 729 (1982).

    Article  Google Scholar 

  2. W. Teubner, Vak. Tech. 16, 69 (1967).

    Google Scholar 

  3. K. M. Welch, Vacuum 23, 271 (1973).

    Article  Google Scholar 

Mechanical Pump

  1. N. S. Harris and L. Budgen, “Design and manufacture of modern mechanical vacuum pump”, Vacuum 26 (12), pp. 525–529 (1976).

    Article  Google Scholar 

  2. B. S. Ramprasad and T. S. Radha, “On some design aspects of rotary vane pumps”, Vacuum 23 (7), pp. 245–249 (1973).

    Article  Google Scholar 

Diffusion Pump

  1. M. H. Hablanian and J. C. Maliakal, “Advances in diffusion pump technology”, J. Vac. Sci. Technol. 10 (1), pp. 58–64 (1973).

    Article  ADS  Google Scholar 

  2. H.-P. Kabelitz and J. K. Fremerey, “Turbomolecular vacuum pumps with a new magnetic bearing concept”, Vacuum 38 (8–10), pp. 673–676 (1988).

    Article  Google Scholar 

  3. G. Levi, “Combination of turbomolecular pumping stages and molecular drag stages”, J. Vac. Sci. Technol. A 10 (4), pp. 2619–2622 (1992).

    Article  ADS  Google Scholar 

  4. B. Cho, S. Lee, and S. Chung, “Creation of extreme high vacuum with a turbomolecular pumping system: A baking approach”, J. Vac. Sci. Technol. A 13 (4), pp. 2228–2232 (1995).

    Article  ADS  Google Scholar 

Dry Vacuum Pump

  1. P. A. Lessard, “Dry vacuum pumps for semiconductor processes: Guidelines for primary pump selection”, J. Vac. Sci. Technol. A 18 (4), pp. 1777–1781 (2000).

    Article  ADS  Google Scholar 

  2. I. Akutsu and T. Ohmi, “Innovation of the fore pump and roughing pump for high-gas-flow semiconductor processing”, J. Vac. Sci. Technol. A 17 (6), pp. 3505–3508 (1999).

    Article  ADS  Google Scholar 

  3. R.-Y. Jou, H.-P. Cheng, Y.-W. Chang, F.-Z. Chen, and M. Iwane, “Designs, analyses, and tests of a spiral-grooved turbobooster pump”, J. Vac. Sci. Technol. A 18 (3), pp. 1016–1024 (2000).

    Article  ADS  Google Scholar 

  4. A. Liepert and P. Lessard, “Design and operation of scroll-type primary vacuum pumps”,J. Vac. Sci. Technol. A 19 (4), pp. 1708–1711 (2001).

    Article  ADS  Google Scholar 

  5. Handbook of Vacuum Science and Technology”, edited by D. M. Hoffman, B. Singh, and J. H. Thomas, III, Academic Press. pp. 84–96.

    Google Scholar 

  6. H.-P. Cheng and M.-T. Chiang, “Pumping performance investigation of a turbobooster vacuum pump equipped with spiral-grooved rotor and inner housing by the computational fluids dynamics method”, J. Vac. Sci. Technol. A 21 (4), pp. 1458–1463 (2003).

    Article  ADS  Google Scholar 

  7. S. Giors, E. Colombo, F. Inzoli, F. Subba, and R. Zanino, “Computational fluid dynamic model of a tapered Holweck vacuum pump operating in the viscous and transition regimes. I. Vacuum performance”, J. Vac. Sci. Technol. A 24 (4), pp. 1584–1591 (2006).

    Article  Google Scholar 

  8. R. P. Davis, R. A. Abreu, and A. D. Chew, “Dry vacuum pump: A method for the evaluation of the degree of dry”, J. Vac. Sci. Technol. A 28 (4), pp. 1782–1788 (2000).

    Article  ADS  Google Scholar 

Cryopump

  1. P. D. Bentley, “The modern cryopump”, Vacuum 30 (4/5), pp. 145–158 (1980).

    Article  Google Scholar 

  2. H.-H. Klein, R. Heisig, and C. M. Augustine, “Use of refrigerator-cooled cryopumps in sputtering plants”, J. Vac. Sci. Technol. A 2 (2), pp. 187–190 (1984).

    Article  ADS  Google Scholar 

  3. R. W. Dennison and G. R. Gray, “Cryogenic versus turbomolecular pumping in a sputtering application”, J. Vac. Sci. Technol. 16 (2), pp. 728–730 (1979).

    Article  ADS  Google Scholar 

  4. H.-P. Cheng and Y.-H. Shen, “Effect of heat on the pumping performance of cryopump”, J. Vac. Sci. Technol. A 24(4), pp. 1597–1600 (2006).

    Article  Google Scholar 

  5. R. E. Honig and H. O. Hook, “Vapor pressure data for some common gases”, RCA Review, September, pp. 360–368 (1960).

    Google Scholar 

Sputter Ion Pump

  1. D. Andrew, “The development of sputter-ion pumps”, Proc. of the 4th Internl. Vacuum Congress, 1968 (Manchester, April 1668), pp. 325–331.

    Google Scholar 

  2. R. L. Jepsen, “The physics of sputter-ion pumps”, Proc. of the 4th Internl. Vacuum Congress, 1968 (Manchester, April 1968), pp. 317–324.

    Google Scholar 

  3. S. L. Rutherford, “Sputter-ion pumps for low pressure operation”, Transactions of the 10th National Vacuum Symposium, 1963 (Macmillan, New York, 1964), pp.185–190.

    Google Scholar 

  4. K. Ohara, I. Ando, and N. Yoshimura, “Pumping characteristics of sputter ion pumps with high-magnetic-flux densities in an ultrahigh-vacuum range”, J. Vac. Sci. Technol. A 10 (5), pp. 3340–3343 (1992).

    Article  ADS  Google Scholar 

  5. R. L. Jepsen, A. B. Francis, S. L. Rutherford, and B. E. Kietzmann, “Stabilized air pumping with diode type getter-ion pumps”, Transactions of the 7th National Vacuum Symposium, 1960 (Pergamon Press, New York, 1961), pp. 45–50.

    Google Scholar 

  6. P. N. Baker and L. Laurenson, “Pumping mechanisms for the inert gases in diode Penning pumps”, J. Vac. Sci. Technol. 9 (1), pp. 375–379 (1972).

    Article  ADS  Google Scholar 

  7. D. R. Denison, “Comparison of diode and triode sputter-ion pumps”, J. Vac. Sci. Technol. 14 (1), pp. 633–635 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Komiya and N. Yagi, “Enhancement of noble gas pumping for a sputter-ion pump”, J. Vac. Sci. Technol. 6 (1), pp. 54–57 (1969).

    Article  ADS  Google Scholar 

  9. N. Yoshimura, K. Ohara, I. Ando, and H. Hirano, “Ar-pumping characteristics of diode-type sputter ion pumps with various shapes of ‘Ta/Ti’ cathode pairs”, J. Vac. Sci. Technol. A 10 (3), pp. 553–555 (1992).

    Article  ADS  Google Scholar 

  10. N. Yoshimura, K. Ohara, I. Ando, and H. Hirano, “Ar-pumping characteristics of diode-type sputter ion pumps with various shapes of ‘Ta/Ti’ cathode pairs”, Shinku (J. Vac. Soc. Japan) 35 (6), pp. 574–578 (1992) (in Japanese).

    Google Scholar 

  11. K. M. Welch, D. J. Pate, and R. J. Todd, “Pumping of helium and hydrogen by sputter-ion pumps. (1) Helium pumping”, J. Vac. Sci. Technol. A 11 (4), pp. 1607–1613 (1993).

    Article  ADS  Google Scholar 

  12. K. M. Welch, D. J. Pate, and R. J. Todd, “Pumping of helium and hydrogen by sputter-ion pumps. (2) Hydrogen pumping”, J. Vac. Sci. Technol. A 12 (3), pp. 861–866 (1994).

    Article  ADS  Google Scholar 

Getter Pump

  1. D. J. Harra, “Review of sticking coefficients and sorption capacities of gases on titanium films”, J. Vac. Sci. Technol. 13 (1) pp. 471–474 (1976).

    Article  ADS  Google Scholar 

  2. D. Edwards, Jr., “Methane outgassing from a Ti sublimation pump”, J. Vac. Sci. Technol. 17 (1), pp. 279–281 (1980).

    Article  ADS  Google Scholar 

  3. C. Benvenuti and P. Chiggiato, “Pumping characteristics of the St707 nonevaporable getter (Zr 70 V 24.6 Fe 5.4 wt%)”, J. Vac. Sci. Technol. A 14 (6), pp. 3278–3282 (1996).

    Article  ADS  Google Scholar 

  4. Y. Li, D. Hess, R. Kersevan, and N. Mistry, “Design and pumping characteristics of a compact titanium-vanadium non-evaporable getter pump”, J. Vac. Sci. Technol. A 16 (3), pp. 1139–1144 (1998).

    Article  ADS  Google Scholar 

Measurement of Pumping Speeds

  1. D. F. Munro and T. Tom, “Speed measuring of ion getter pumps by the ‘three-gauge’ method”, 1965 Trans. 3rd Internl. Vacuum Congress, pp. 377–380.

    Google Scholar 

  2. H. Hirano and N. Yoshimura, “A three-point-pressure method for measuring the gas-flow rate through a conducting pipe”, J. Vac. Sci. Technol. A 4 (6), pp. 2526–2530 (1986).

    Article  ADS  Google Scholar 

  3. H. Hirano and N. Yoshimura, “A three-point-pressure method for measuring the gas-flow rate through a conducting pipe”, Shinku (J. Vac. Soc. Japan) 30 (6), pp. 531–537 (1987).

    Google Scholar 

Other Articles

  1. M. A. Baker, L. Holland, and D. A. G. Stanton, “The design of rotary pumps and systems to provide clean vacua”, J. Vac. Sci. Technol. 9 (1), pp. 412–415 (1972).

    Article  ADS  Google Scholar 

Dry Vacuum Pump

  1. E. J. Eckle, P. Bickert, R. Lachenman, and B. Wortmann, “Pumping speed of diaphragm pumps for various gases”, Vacuum 47 (6–8), pp. 799–801 (1996).

    Article  Google Scholar 

  2. J. Y. Tu, Y. Zhu, and Z. Wang, “A new design for the disk-type molecular pump”, J. Vac. Sci. Technol. A 8 (5), pp. 3870–3889 (1990).

    Article  ADS  Google Scholar 

  3. I. V. Ioffe, V. A. Koss, M. Gray, and R. G. Livesey, “Modeling of a multistage claw rotor vacuum pump”, J. Vac. Sci. Technol. A 13 (2), pp. 536–539 (1995).

    Article  ADS  Google Scholar 

  4. J. C. Helmer, G. Levi, “Transition gas flow in drag pumps and capillary leaks”, J. Vac. Sci. Technol. A 13 (5), pp. 2592–2599 (1995).

    Article  ADS  Google Scholar 

  5. H. V. Pitingsrud, “Miniature peristaltic vacuum pump for use in portable instruments”, J. Vac. Sci. Technol. A 14 (4), pp.2610–2617 (1996).

    Article  ADS  Google Scholar 

  6. K. Ando, I. Akutsu, and T. Ohmi, “Gradational lead screw vacuum pump development”, J. Vac. Sci. Technol. A 17 (5), pp. 3144–3148 (1999).

    Article  ADS  Google Scholar 

  7. T. Sawada and W. Sugiyama, “Pumping mechanism of helical grooved molecular drag pumps”, J. Vac. Sci. Technol. A 17 (4), pp. 2069–2074 (1999).

    Article  ADS  Google Scholar 

  8. R. P. Davis, R. A. Abreu, and A. D. Chew, “Dry vacuum pumps: A method for the evaluation of the degree of dry”, J. Vac. Sci. Technol. A 18 (4), pp. 1782–1788 (2000).

    Article  ADS  Google Scholar 

  9. I. Akutsu, T. Matsuoka, M. Ozaki, T. Kyuko, S. Miyashita, T. Ozawa, M. Naka, H. Ohnishi, Y. Narahara, and G. Horikoshi, “A gradational lead screw dry vacuum pump”, J. Vac. Sci. Technol. A 18 (3), pp. 1045–1047 (2000).

    Article  ADS  Google Scholar 

  10. J.-S. Heo and Y.-K. Hwang, “Molecular transition and slip flows in the pumping channels of drag pumps”, J. Vac. Sci. Technol. A 18 (3), pp. 1025–1034 (2000).

    Article  ADS  Google Scholar 

  11. F. Sharipov, P. Fahrenbach, and A. Zipp, “ Numerical modeling of the Holweck pump”, J. Vac. Sci. Technol. A 23 (5), pp. 1331–1339 (2005).

    Article  ADS  Google Scholar 

Diffusion Pump

  1. M. H. Hablanian, “Backstreaming measurements above liquid-nitrogen traps”, J. Vac. Sci. Technol. 6 (1), pp. 265–268 (1969).

    Article  ADS  Google Scholar 

  2. H. M. Sullivan, “Vacuum pumping equipment and systems”, Rev Sci. Instrum. 19 (1), pp. 1–15 (1948).

    Article  ADS  Google Scholar 

  3. T. E. Lucas, “Properties of high vacuum pumps”, Vacuum 15 (5), pp. 221–229 (1965).

    Article  Google Scholar 

  4. N. A. Florescu, “Increase in performance of the vapour vacuum pump”, Vacuum 12, pp. 259–265 (1962).

    Article  Google Scholar 

  5. D. M. Hoffman, “Operation and maintenance of a diffusion-pumped vacuum system”, J. Vac. Sci. Technol. 16 (1), pp. 71–74 (1979).

    Article  ADS  Google Scholar 

  6. D. J. Santeler, “The use of diffusion pumps for obtaining ultraclean vacuum environments”, J. Vac. Sci. Technol. 8 (1), pp. 299–307 (1971).

    Article  ADS  Google Scholar 

  7. B. D. Power, N. T. M. Dennis, P. D. Oswald, and B. H. Colwell, “Single structure vapour pumping groups”, Vacuum 24 (3), pp. 117–122 (1974).

    Article  Google Scholar 

  8. E. H. Hirsch and J. Richards, “Pressure fluctuations in a diffusion pump using polyphenyl ether”,Vacuum 24 (3), pp. 123–124 (1974).

    Article  Google Scholar 

  9. LK. Watanabe, “Technical developments and examples of modern oil diffusion pumps”, Shinku (J. Vac. Soc. Japan) 20 (6), pp. 202–212 (1977) (in Japanese).

    Google Scholar 

  10. M. H. Hablanian, “Consider diffusion pumps”, Industrial Research/Development August, pp.84–89 (1979).

    Google Scholar 

  11. N. T. M. Dennis, L. Laurenson, A. Devaney, and B. H. Colwell, “Factors influencing the ultimate vacuum of single structure vapor pumping groups”, J. Vac. Sci. Technol. 20 (4), pp. 996–999 (1982).

    Article  ADS  Google Scholar 

  12. T. J. Gay, J. A. Brand, M. C. Fritts, J. E. Furst, M. A. Khakoo, E. R. Mell, M. T. Sieger, and W. M. K. P. Wijayaratna, “Clean ultrahigh vacuum system with single-structure diffusion pumps”, J. Vac. Sci. Technol. A 12 (5), pp. 2903–2910 (1994).

    Article  ADS  Google Scholar 

  13. L. T. Chu, “Safety interlock and remote computer monitoring for a diffusion-pumped vacuum system”, J. Vac. Sci. Technol. A 15 (1), pp. 201–205 (1997).

    Article  ADS  Google Scholar 

  14. S. Chambreau, M. L. Neuburger, T. Ho, B. Funk, and D. Pullman, “Low cost, mechanically refrigerated diffusion pump baffle for ultrahigh vacuum chambers”, J. Vac. Sci. Technol. A 18 (5), pp. 2581–2585 (2000).

    Article  ADS  Google Scholar 

  15. L. Maurice, P. Duval, and G. Gorinas, “Oil backstreaming in turbomolecular and oil diffusion pumps”, J. Vac. Sci. Technol. 16 (2), pp. 741–745 (1979).

    Article  ADS  Google Scholar 

  16. N. S. Harris, “Modern diffusion pump vs turbomolecular pump systems”, Vacuum 30 (4/5), pp. 175–181 (1980).

    Article  Google Scholar 

Turbomolecular Pump

  1. M. H. Hablanian, “New concepts in turbomolecular pump design”, J. Vac. Sci. Technol. A 11 (4), pp. 1614–1619 (1993).

    Article  ADS  Google Scholar 

  2. C. H. Kruger and A. H. Shapiro, “Vacuum pumping with a bladed axial-flow turbomachine”, 1960 7th National Symposium on Vacuum Technology Transactions (Pergamon Press, New York, 1961), pp. 6–12.

    Google Scholar 

  3. W. Becker, “Die Turbomolekularpumpe”, Vakuum-Technik, 15 (9), pp. 211–218 (1966).

    Google Scholar 

  4. W. Becker, “Die Turbomolekularpumpe II”, Vakuum-Technik, 15 (10), pp. 254–260 (1966).

    Google Scholar 

  5. W. Nesseldreher, “The effects of different parameters on the residual gas mass spectrograms of turbo-molecular pumps”, Vacuum 26 (7), pp. 281–286 (1976).

    Article  Google Scholar 

  6. G. E. Osterstrom and T. Knecht, “Grease lublication of turbomolecular vacuum pump bearings”, J. Vac. Sci. Technol. 16 (2), pp. 746–747 (1979).

    Article  ADS  Google Scholar 

  7. R. W. Dennison and G. R. Gray, “Cryogenic versus turbomolecular pumping in a sputtering application”, J. Vac. Sci. Technol. 16 (2), pp. 728–730 (1979).

    Article  ADS  Google Scholar 

  8. J. A. Basford, “Testing of turbomolecular pumps”, J. Vac. Sci. Technol. A 10 (4), pp. 2623–2628 (1992).

    Article  ADS  Google Scholar 

  9. D. Ba, N. Yang, X. Wang, S. Pang, Y. Zhu, and X. Wang, “Pumping performance of a new type of hybrid molecular pump”, J. Vac. Sci. Technol. A 10 (5), pp. 3352–3355 (1992).

    Article  ADS  Google Scholar 

  10. M. Iguchi, M. Okamoto, and T. Sawada, “Analysis of TMP’s ultimate pressure and development of XHV-TMP and XHV-CMP”, Shinku (J. Vac. Soc. Japan) 37 (9), pp.742–750 (1994) (in English).

    Google Scholar 

  11. N. Ogure, A. Shibata, K. Ono, N. Hayasaka, H. Okano, and K. Okumura, “Enhancement of hydrogen pumping by injecting fluorine into the exhaust system of turbomolecular pumps”, J. Vac. Sci. Technol. A 13 (3), pp. 524–530 (1995).

    Article  ADS  Google Scholar 

  12. S. Katsimichas, A. J. H. Goddard, R. Lewington, and C. R. E. de Oliveira, “General geometry calculations of one-stage molecular flow transmission probabilities for turbomolecular pumps”, J. Vac. Sci. Technol. A 13 (6), pp. 2954–2961 (1995).

    Article  ADS  Google Scholar 

  13. J. R. Thompson, P. M. Weber, and R. Hellmer, “Extended operation of a wide-range, all-magnetic bearing turbomolecular pump without baking”, J. Vac. Sci. Technol. A 14 (5), pp. 2965–2967 (1996).

    Article  ADS  Google Scholar 

  14. N. Konishi, T. Shibata, and T. Ohmi, “Impurity back diffusion through an ultrahigh vacuum turbomolecular pump under large gas throughput”, J. Vac. Sci. Technol. A 14 (5), pp. 2958–2962 (1996).

    Article  ADS  Google Scholar 

  15. M. Spagnol, R. Cerruti, and J. Helmer, “Turbomolecular pump design for high pressure operation”, J. Vac. Sci. Technol. A 16 (3), pp. 1151–1156 (1998).

    Article  ADS  Google Scholar 

  16. K. Ino, K. Sekine, T. Shibata, T. Ohmi, and Y. Maejima, “Improvement of turbomolecular pumps for ultraclean, low-pressure, and high-gas-flow processing”, J. Vac. Sci. Technol. A 16 (4), pp. 2703–2710 (1998).

    Article  ADS  Google Scholar 

  17. H.-P. Cheng, R.-Y. Jou, F.-Z. Chen, and Y.-W. Chang, “Three-dimensional flow analysis of spiral-grooved turbo booster pump in slip and continuum flow”, J. Vac. Sci. Technol. A 18 (2), pp. 543–551 (2000).

    Article  ADS  Google Scholar 

  18. M. Harsdorff and R. W. Adam, “On the application of turbomolecular pumps in electron microscopes”, Vacuum 22 (2), pp. 55–59 (1972).

    Article  Google Scholar 

  19. H. Enosawa, C. Urano, T. Kawashima, and M. Yamamoto, “High throughput turbomolecular pump for extreme high vacuum”, J. Vac. Sci. Technol. A 8 (3), pp. 2768–2771 (1990).

    Article  ADS  Google Scholar 

  20. M. Heldner and H.-P. Kabelitz, “Reliability of turbomolecular vacuum pumps: A comparison of rolling element and magnetic bearing systems”, J. Vac. Sci. Technol. A 8 (3), pp. 2772–2777 (1990).

    Article  ADS  Google Scholar 

Cryopump

  1. R. Dobrozemsky and G. Moraw, “Pumping speed of cryosorption pumps in the pressure range 10-6–10-3 Torr”, Vacuum 21 (12), pp. 587–589 (1971).

    Article  Google Scholar 

  2. P. Vijendran and C. V. G. Nair, “Design and performance characteristics of sorption pumps”, Vacuum 21 (5), pp. 159–164 (1971).

    Article  Google Scholar 

  3. O. E. Vilches and J. C. Wheatley, “Techniques for using liquid helium in very low temetature apparatus”, Rev. Sci. Instrum. 37 (7), pp. 819–831 (1966).

    Article  ADS  Google Scholar 

  4. J. P. Hobson, ”Cryopumping”, J. Vac. Sci. Technol. 10 (1), pp. 73–79 (1973).

    Article  ADS  Google Scholar 

  5. C. Benvenuti, “Characteristics, advantages, and possible applications of condensation cryopumping”, J. Vac. Sci. Technol. 11 (3), pp. 591–598 (1974).

    Article  ADS  Google Scholar 

  6. H. J. Halama and J. R. Aggus, “Measurements of adsorption isotherms and pumping speed of helium on molecular sieve in the 10-11–10-7 Torr range at 4.2 K”, J. Vac. Sci. Technol. 11 (1), pp. 333–336 (1974).

    Article  ADS  Google Scholar 

  7. G. Mongodin, V. R. Piacentini, and W. Sajnacki, “Evaluation of a liquid-helimu cryopumping system operating with an electron beam gun”, J. Vac. Sci. Technol. 11 (1), pp. 340–343 (1974).

    Article  ADS  Google Scholar 

  8. G. Klipping, “Relations between cryogenics and vacuum technology up to now and in the future”,Proc. 6th Internl. Vacuum Congr. 1974, Japan J. Appl. Phys. Suppl. 2, Pt. 1, 1974, pp. 81–88.

    Google Scholar 

  9. P. Kleber, “Pressure, what does it mean in vacuum chambers with cryosurfaces?”, Vacuum 25 (5), pp. 191–196 (1975).

    Article  Google Scholar 

  10. J. Visser and J. J. Scheer, “Twenty-kelvin cryopumping in magnetron sputtering systems”, J. Vac. Sci. Technol. 16 (2), pp. 734–737 (1979).

    Article  ADS  Google Scholar 

  11. C. F. Dillow and J. Palacios, “Cryogenic pumping of helium, hydrogen, and a 90% hydrogen-10% helium mixture”, J. Vac. Sci. Technol. 16 (2), pp. 731–733 (1979).

    Article  ADS  Google Scholar 

  12. I. Arakawa, M. Kobayashi, and Y. Tuzi, “Effects of thermal spikes on the characteristics of cryosorption pumps with condensed carbon dioxide layers”, J. Vac. Sci. Technol. 16 (2), pp. 738–740 (1979).

    Article  ADS  Google Scholar 

  13. C. Benvenuti and M. Firth, “Improved version of the CERN condensation cryopump”, Vacuum 29 (11/12), pp. 427–432 (1979).

    Article  Google Scholar 

  14. R. A. Haefer, “On the pumping speed of large area cryopumps”, Vacuum 30 (1), pp. 19–22 (1980).

    Article  Google Scholar 

  15. J. L. Hemmerrich and E. B. Deksnis, “Pumping efficiencies of three-dimensional cryopumping structures”, J. Vac. Sci. Technol. 19 (1), pp. 96–99 (1981).

    Article  ADS  Google Scholar 

  16. B. A. Hands, “Recent development in cryopumping”, Vacuum 32 (10/11), pp. 603–612 (1982).

    Article  Google Scholar 

  17. R. A. A. Kubiak, W. Y. Leong, R. M. King, and E. H. C. Parker, “On baking a cryopumped UHV system”, J. Vac. Sci. Technol. A 1 (4), pp. 1872–1873 (1983).

    Article  ADS  Google Scholar 

  18. M. Kasuya and J. Yuyama, “An ultrahigh vacuum application of a refrigerator-cooled cryopump”, J. Vac. Sci. Technol. A 8 (4), pp. 3333–3336 (1990).

    Article  ADS  Google Scholar 

  19. N. Gotoh, T. Momose, H. Ishimaru, and M. P. Larin, “Liquid helium cryopumps with low-emissivity Al film coatings and low helium consumption”, J. Vac. Sci. Technol. A 13 (5), pp. 2579–2581 (1995).

    Article  ADS  Google Scholar 

  20. M. M. Menon, G. J. Laughon, R. Maingi, M. R. Wade, D. L. Hillis, and M. A. Mahdavi, “Pumping characteristics of a cryopump with Ar sorbent in He and in a D2/He mixture”, J. Vac. Sci. Technol. A 13 (3), pp. 551–555 (1995).

    Article  ADS  Google Scholar 

  21. M. Xu and Y. Matsui, “Obtaining extremely high vacuum using sintered fine copper powder as a cryosorbent”, J. Vac. Sci. Technol. A 13 (1), pp. 132–135 (1995).

    Article  ADS  Google Scholar 

  22. R. Giannantonio, M. Succi, and C. Solcia, “Combination of a cryopump and a non-evaporable getter pump in applications”, J. Vac. Sci. Technol. A 15 (1), pp. 186–191 (1997).

    Article  ADS  Google Scholar 

  23. S. Nesterov, J. Vasiliev, L. C. Wagner, and M. Boiarski, “Hydrogen pumping simulation for cryopumps”, J. Vac. Sci. Technol. A 17 (4), pp. 2099–2103 (1999).

    Article  ADS  Google Scholar 

  24. E. Wallén, “Adsorption isotherms of He and H2 at liquid He temperatures”, J. Vac. Sci. Technol. A 15 (2), pp. 265–274 (1997).

    Article  ADS  Google Scholar 

  25. J. E. de Rijke, “Factors affecting cryopump base pressure”, J. Vac. Sci. Technol. A 8 (3), pp. 2778–2781 (1990).

    Article  ADS  Google Scholar 

  26. G. S. Venuti, “Use of vibration-isolated cryopumps to improve electron microscopes and electron beam lithography units”, J. Vac. Sci. Technol. A 1 (2), pp. 237–240 (1983).

    Article  ADS  Google Scholar 

Sputter Ion Pump

  1. S. L. Rutherford, S. L. Mercer, and R. L. Jepsen, “On pumping mechanisms in getter-ion pumps employing cold-cathode gas discharges”, 1960 7th National Symposium on Vacuum Technology Transactions (Pergamon Press, New York, 1961), pp. 380–382.

    Google Scholar 

  2. R. L. Jepsen, “Magnetically confined cold-cathode gas discharges at low pressures”, J. Appl. Phys. 32 (12), pp. 2619–2626 (1961).

    Article  ADS  Google Scholar 

  3. K. Ohara, I. Ando, and N. Yoshimura, “Pumping characteristics of sputter ion pumps with high magnetic fields in an ultrahigh vacuum range”, Shinku (J. Vac. Soc. Japan) 35 (6), pp. 567–573 (1992) (in Japanese).

    Google Scholar 

  4. H. Hirano and N. Yoshimura, “A three-point-pressure method for measuring the gas-flow rate through a conducting pipe”, Shinku (J. Vac. Soc. Japan) 30 (6), pp. 531–537 (1987) (in Japanese).

    Google Scholar 

  5. W. M. Brubaker, “A method for greatly enhancing the pumping action of a Penning discharge”, 1959 6th National Symposium on Vacuum Technology Transactions (Pergamon Press, New York, 1960), pp. 302–306.

    Google Scholar 

  6. E. H. Hirsch, “On the mechanism of the Penning discharge”, Brit. J. Appl. Phys., 15, pp. 1535–1543 (1964).

    Article  ADS  Google Scholar 

  7. W. Bächler, “Optimale Ausnutzung des Magnetfeldes bei Ionen-Zerstäuberpumpen”, Transactions 3rd Internl. Vacuum Congr. Vol. 2, Part II (1965), pp. 609–612.

    Google Scholar 

  8. A. Dallos and F. Steinrisser, “Pumping speeds of getter-ion pumps at low pressures”, J. Vac. Sci. Technol. 4 (1), pp. 6–9 (1967).

    Article  ADS  Google Scholar 

  9. H. Roth und B. Wenzel, “Zur Dimensionierung von Ionenzerstäuderpumpen rotationssymmetrischer Bauart”, Vakuum-Technik 16 (1/2), pp. 1–8 (1967).

    Google Scholar 

  10. W. Schuurman, “Investigation of a low pressure Penning discharge”, Physica 36, pp. 136–160 (1967).

    Article  ADS  Google Scholar 

  11. A. Dallos, “ The pressure dependence of the pumping speed of sputter ion pump”, Vacuum 19, pp. 79–80 (1969).

    Article  Google Scholar 

  12. T. Tom and B. D. James, “Inert gas ion pumping using differential sputter yield cathodes”, J. Vac. Sci. Technol. 6 (2), pp. 304–307 (1969).

    Article  ADS  Google Scholar 

  13. V. V. Ryabov and G. L. Saksagansky, “Influence of asymmetry of magnetic and electric fields on the parameters of sputter-ion pumps”, Vacuum 22(5), pp. 191–193 (1972).

    Article  Google Scholar 

  14. H. Hartwig and J. S. Kouptsidis, “A new approach for computing diode sputter-ion pump characteristics”, J. Vac. Sci. Technol. 11 (6), pp. 1154–1159 (1974).

    Article  ADS  Google Scholar 

  15. W. Ho, R. K. Wang, and T. P. Keng, “Calculation of sputtering ion pump speed”, J. Vac. Sci. Technol. 20 (4), pp. 1010–1013 (1982).

    Article  ADS  Google Scholar 

  16. M. Pierini and L. Dolcino, “A new sputter ion-pump element”, J. Vac. Sci. Technol. A 1 (2), pp. 140–142 (1983).

    Article  ADS  Google Scholar 

  17. M. Pierini, “Use of discharge intensity for evaluation of pumping characteristics of a sputter ion punp”, J. Vac. Sci. Technol. A 2 (2), pp. 195–197 (1984).

    Article  ADS  Google Scholar 

  18. M. Audi, “Pumping speed of sputter ion pumps”, Vacuum 38(8–10), pp. 669–671 (1988).

    Article  Google Scholar 

  19. Y. Yamazaki, M. Miyoshi, T. Nagai, and K. Okumura, “Development of the field emission electron gun integrated in the sputter ion pump”, J. Vac. Sci. Technol. B 9 (6), pp. 2967–2971 (1991).

    Article  Google Scholar 

  20. T. S. Chou, J. Bittner, and J. Schuchman, “Pumping behavior of sputteringion pump”, J. Vac. Sci. Technol. A 10 (4), pp. 2639–2641 (1992).

    Article  ADS  Google Scholar 

  21. H. Kinpara, K. Hirasawa, T. Kotani, M. Nishiyama, K. Hujino, K. Nakajima, N. Takagi, H. Yamakawa, and G. H. Shen, “Generation of extremely high vacuum with a new sputter ion pump”, Shinku (J. Vac. Soc. Japan) 37 (9), pp. 732–735 (1994) (in English).

    Google Scholar 

  22. T. Koizumi, Y. Hayashi, and H. Horiuchi, “Operating characteristics of XHV sputter ion pump”, Shinku (J. Vac. Soc. Japan) 37 (9) pp. 736–741 (1994) (in English).

    Google Scholar 

  23. Y. Suetsugu, “Proposal of a sputter-ion pump structure”, J. Vac. Sci. Technol. A 12 (1), pp. 248–250 (1994).

    Article  ADS  Google Scholar 

  24. Y. Suetsugu, “Test results for a sputter-ion pump with a new cell structure”, J. Vac. Sci. Technol. A 12 (6), pp. 3224–3227 (1994).

    Article  ADS  Google Scholar 

  25. S. Komiya, N. Takahashi, and M.-S. Xu, “A sputter ion pump to maintain fresh and active cathode surface”, Shinku (J. Vac. Soc. Japan) 38 (3), pp. 125–127 (1995) (in Japanese).

    Google Scholar 

  26. N. Takahashi, M.-S. Xu, and S. Komiya, “Pumping speed of cylindrical magnetron sputterion pump for Ar, CH4, He, H2”, Shinku (J. Vac. Soc. Japan) 38 (3), pp. 259–261 (1995) (in Japanese).

    Google Scholar 

  27. M.-S. Xu, N. Takahashi, and S. Komiya, “Production of extreme high vacuum by using a cylindrical magnetron sputter ion pump”, Shinku (J. Vac. Soc. Japan) 38 (3), pp. 271–273 (1995) (in Japanese).

    Google Scholar 

  28. T. Asamaki, T. Taniguchi, T. Fukaya, A. Kudoh, and K. Yamamoto, “Large-Scale coaxial magnetron discharge containing magnets at extremely high vacuum and its application to sputter ion pump”, Shinku (J. Vac. Soc. Japan) 38 (1), pp. 17–21 (1995) (in English).

    Google Scholar 

  29. H. C. Hseuh, W. S. Jiang, and M. Mapes, “Pumping behavior of ion pump elements at high and misaligned magnetic fields”, J. Vac. Sci. Technol. A 13 (3), pp. 531–535 (1995).

    Article  ADS  Google Scholar 

  30. H. C. Hseuh, L. Snydstrup, M. Mapes, and C. Pai, “Beam vacuum system of Brookhaven’s muon storage ring”, J. Vac. Sci. Technol. A 14 (3), pp. 1237–1241 (1996).

    Article  ADS  Google Scholar 

  31. Y. Suetsugu and M. Nakagawa, “Design study of new distributed ion pumps for the TRISTAN accumulation ring”, Vacuum 42(10/11), pp. 625–634 (1991).

    Article  Google Scholar 

Ti Sublimation Pump

  1. J. W. Reichardt, “The kinetics of the hydrogen-Titanium reaction”, J. Vac. Sci. Technol. 9 (1), pp. 548–551 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  2. T. Arai, K. Takeuchi, and Y. Tuzi, “Temperature dependence of the pumping characteristics of titanium getter pump in ultrahigh vacuum”, Shinku (J. Vac. Soc. Japan) 38 (3), pp. 262–265 (1995) (in Japanese).

    Google Scholar 

Non-evaporable Pump

  1. C. Benvenuti and F. Francia, “Room-temperature pumping characteristics of a Zr-Al nonevaporable getter for individual gases”, J. Vac. Sci. Technol. A 6 (4), pp. 2528–2534 (1988).

    Article  ADS  Google Scholar 

  2. C. Benvenuti and F. Francia, “Room-temperature pumping characteristics for gas mixtures of a Zr-Al nonevaporable getter”, J. Vac. Sci. Technol. A 8 (5), pp. 3864–3869 (1990).

    Article  ADS  Google Scholar 

  3. L. Rosai, B. Ferrario, and P. della Porta, “Behavior of Sorb-ac wafer pumps in plasma machines”, J. Vac. Sci. Technol. 15 (2), pp. 746–750 (1978).

    Article  ADS  Google Scholar 

  4. C. Boffito, B. Ferrario, P. della Porta, and L. Rosai, “A nonevaporable low temperature activatable getter material”, J. Vac. Sci. Technol. 18 (3), pp. 1117–1120 (1981).

    Article  ADS  Google Scholar 

  5. H. C. Hseuh and C. Lanni, “Evaluation of Zr-V-Fe getter pump for UHV system”, J. Vac. Sci. Technol. A 1 (2), pp. 1283–1287 (1983).

    Article  ADS  Google Scholar 

  6. T. A. Giorgi, B. Ferrario, and B. Storey, “An updated review of getters and gettering”, J. Vac. Sci. Technol. A 3 (2), pp. 417–423 (1985).

    Article  ADS  Google Scholar 

  7. M. Audi, L. Dolcino, F. Doni, and B. Ferrario, “A new ultrahigh vacuum combination pump”, J. Vac. Sci. Technol. A 5 (4), pp. 2587–2590 (1987).

    Article  ADS  Google Scholar 

  8. E. Giorgi, C. Boffito, and M. Bolognesi, “A new Ti-based non-evaporable getter”, Vacuum 41 (7–9), pp. 1935–1937 (1990).

    Article  Google Scholar 

  9. C. Benvenuti and F. Francia, “Room temperature pumping characteristics for gas mixtures of a Zr-Al nonevaporable getter”, J. Vac. Sci. Technol. A 8 (5), pp. 3864–3869 (1990).

    Article  ADS  Google Scholar 

  10. R. M. Caloi and C. Carretti, “Getters and gettering in plasma display panels”, J. Vac. Sci. Technol. A 16 (3), pp. 1991–1997 (1998).

    Article  ADS  Google Scholar 

  11. F. Watanabe and A. Kasai, “Entrapment pump: Noble gas pump for use in combination with a getter pump”, J. Vac. Sci. Technol. A 17 (5), pp. 3103–3107 (1999).

    Article  ADS  Google Scholar 

  12. R. Giannantonio, P. Manini, F. Mazza, D. Dominoni, A. Clozza, and L. Zanin, “Design and characterization of high capacity nonevaporable getter pumps embedded inside the interaction regions of DAфhi NE”, J. Vac. Sci. Technol. A 17 (4), pp. 2093–2098 (1999).

    Article  ADS  Google Scholar 

  13. S. R. In and S. H. Be, “Pumping characteristics of Zr-V-Fe nonevaporable getter in mixture of H2 and CO gases”, Shinku (J. Vac. Soc. Japan) 37 (1), pp. 5–9 (1994).

    Google Scholar 

Measurement of Pumping Speeds

  1. B. B. Dayton, “The measured speed of an ‘ideal pump ”’, Vacuum 15 (2), pp. 53–57 (1965).

    Article  Google Scholar 

  2. W. Steckelmacher, “The measurement of the speed of pumps”, Vacuum 15 (5), pp. 249–251 (1965).

    Article  Google Scholar 

  3. R. Buhl and E. A. Trendelenburg, “Avoiding systematic errors in measuring the pumping speed of high vacuum pumps”, Vacuum 15 (5), pp. 231–237 (1965).

    Google Scholar 

  4. W. Steckelmacher and D. Turner, “Test header arrangements for determining the speed of pumps using an orifice type impact pressure transducer”, Sci. Instrum., 43 (5), pp. 893–898 (1966).

    ADS  Google Scholar 

  5. D. R. Denison and E. S. McKee, “A comparison of pumping speed measurement methods”, J. Vac. Sci. Technol. 11 (1), pp. 337–339 (1974).

    Article  ADS  Google Scholar 

  6. D. R. Denison, “Monte Carlo design of a 3-gauge test dome”, J. Vac. Sci. Technol. 12 (1), pp. 548–550 (1975).

    Article  ADS  Google Scholar 

  7. F. Yu-guo and Xu. Ting-wei, “The appropriate test domes for pumping speed measurement”, Vacuum 30 (10), pp. 377–382 (1980).

    Article  Google Scholar 

  8. J. K. N. Sharma and D. R. Sharma, “Study of molecular flow inside a test dome connected to the same diameter diffusion pump”, Vacuum 32 (5), pp. 283–291 (1982).

    Article  Google Scholar 

  9. J. K. N. Sharma and D. R. Sharma, “Comparison of two pumping speed measuring methods of oil diffusion pumps”, Vacuum 32 (5), pp. 253–256 (1982).

    Article  Google Scholar 

  10. J. K. N. Sharma and D. R. Sharma, “Gas beaming effect: measurement of pumping speed and determination of effective conductance”, Vacuum 34 (6), pp. 653–657 (1984).

    Article  Google Scholar 

  11. J. M. F. Dos Santos, “Throughput determination in pumping speed measurements: comparison of two methods”, Vacuum 38 (7), pp. 541–542 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshimura, N. (2008). Vacuum Pumps. In: Vacuum Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74433-7_2

Download citation

Publish with us

Policies and ethics