Skip to main content

Tools for the Diagnosis of Renal Disease

  • Chapter
Book cover Pediatric Nephrology in the ICU
  • 1389 Accesses

Core Messages

  • Kidney function abnormalities are associated with increased morbidity and mortality in critically ill ICU patients.

  • Even modest increases in serum creatinine of 0.3–0.4 mg dL−1 lead to a 70% greater risk of death compared with patients without an increase.

  • Physiologic changes that occur during illness may affect solute and water handling as well as renal function. These changes can easily be assessed using a combination of readily available clinical and laboratory data or what can be considered diagnostic tools.

  • These tools can be used to do the following:

    • Determine the appropriateness of the renal response for a particular clinical circumstance.

    • Make or confirm a diagnosis.

    • Guide and monitor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuelo JG (2007) Normotensive ischemic acute renal failure. N Eng J Med 357:797–805

    Article  CAS  Google Scholar 

  2. Astrup P, Jorgensen K, Andersen OS, et al. (1960) The acidbase metabolism. A new approach. Lancet 1:1035–1039

    Article  PubMed  CAS  Google Scholar 

  3. Astrup P (1963) Acid-base disorders. N Eng J Med 269:817

    Google Scholar 

  4. Barozzi L, Valentino M, Santoro A, et al. (2007) Renal ultrasonography in critically ill patients. Crit Care Med 35 (Suppl):S198–S205

    Article  PubMed  Google Scholar 

  5. Batlle DC, Arruda JAL, Kurtzman NA (1981) Hyperkalemia distal renal tubular acidosis associated with obstructive uropathy. N Eng J Med 304:373–380

    Article  CAS  Google Scholar 

  6. Batlle DC, Hizon M, Cohen E, et al. (1988) The use of the urine anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Eng J Med 318:594–599

    CAS  Google Scholar 

  7. Berl T (1976) Hypernatremia. Clinical disorders of water metabolism. Kidney Int 110:117

    Article  Google Scholar 

  8. Brivet FG, Kleinknecht DJ, Loirat P, et al. (1996) Acute renal failure in intensive care units: causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med 24(2):192–198

    Article  PubMed  CAS  Google Scholar 

  9. Carvounis C P, Nisar S, Guro-Razuman S (2002) Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int 62:2223–2229

    Article  PubMed  CAS  Google Scholar 

  10. Chertow GM, Burdick E, Honour M, et al. (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370

    Article  PubMed  Google Scholar 

  11. Clermont G, Acker CG, Angus DC, et al. (2002) Renal failure in the ICU: comparison of the impact of acute renal failure and end-stage renal disease on ICU outcomes. Kidney Int 62:986–996

    Article  PubMed  Google Scholar 

  12. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  PubMed  CAS  Google Scholar 

  13. Constable PD (1999) Clinical assessment of acid–base status. Strong ion difference theory. Vet Clin N Am Food Anim Pract 15:447–471

    CAS  Google Scholar 

  14. Corey HE, Greifer I, Greenstein SM, et al. (1993) The fractional excretion of urea; a new diagnostic test for acute renal allograft rejection. Pediatr Nephrol 7:268–272

    Article  PubMed  CAS  Google Scholar 

  15. Corey HE (2003) Stewart and beyond: numeral goals of acid-base balance. Kidney Int 64:777–787

    Article  PubMed  CAS  Google Scholar 

  16. Counahan R, Chandler C, Ghazali S, et al. (1976) Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 51:875–878

    Article  PubMed  CAS  Google Scholar 

  17. Chung HM, Kluge R, Schrier RW, et al. (1987) Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med 83:905–908

    Article  PubMed  CAS  Google Scholar 

  18. Dubin A, Menises MM, Masevicius FD, et al. (2007) Comparison of three different methods of evaluation of metabolic acid-based disorders. Crit Care Med 35:1264–1270

    Article  PubMed  CAS  Google Scholar 

  19. Ellison DH, Berl T (2007) The syndrome of inappropriate antidiuresis. N Eng J Med 356:2064–2072

    Article  CAS  Google Scholar 

  20. Emmett M, Nairns RG (1977) Clinical use of the anion gap. Medicine 56:38–54

    Article  PubMed  CAS  Google Scholar 

  21. Figge J, Jabor A, Kazda A, et al. (1998) Anion gap and hypoalbuminemia. Crit Care Med 26(11):1807–1810

    PubMed  CAS  Google Scholar 

  22. Fowler KA, Locken JA, Duchesne JH, Williamson MR (2002) US for detecting renal calculi with nonenhanced CT as a reference standard. Radiology 222:109–113

    Article  PubMed  Google Scholar 

  23. Gamba G (2005) Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol Renal Physiol 288:F245–F252

    Article  PubMed  CAS  Google Scholar 

  24. Giebisch G, Krapf R, Wagner C (2007) Renal and extra renal regulation of potassium. Kidney Int 72:397–410

    Article  PubMed  CAS  Google Scholar 

  25. Guignard J, Santos F (2004) Laboratory investigations. In: Avner ED, Harmon WE, Niaduet P (eds) Pediatric nephrology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, PA , p 401

    Google Scholar 

  26. Halperin ML, Kamel KS (2000) Use of the composition of the urine at the bedside: emphasis on this physiologic principles to provide insights into diagnostic and therapeutic issues. In: Seldin DW, Giebish G (eds) The Kidney-physiology and pathophysiology, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, PA, pp 2297–2327

    Google Scholar 

  27. Herrin JT, Fluid and electrolytes (1997). In: Graef JW (ed) Manual of pediatric therapeutics, 6th edn. Lippincott-Raven, Philadelphia, PA, pp 63–75

    Google Scholar 

  28. Herrin JT (1999) General urology: workup of hematuria and tubular disorders. In: Gonzáles ET, Bauer SB (eds) Pediatric urology practice. Lippincott-Raven, Philadelphia, PA, pp 69–78

    Google Scholar 

  29. Hogg RJ, Furth S, Lemley K V, et al. (2003) National kidney foundation kidney disease outcomes quality initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, and classification, and stratification. Pediatrics 111:1416–1421

    Article  PubMed  Google Scholar 

  30. Holliday MA, Friedman AL, Segar WE, et al. (2004) Acute hospital induced hyponatremia in children: a physiologic approach. J Pediatr 145:584–587

    Article  PubMed  Google Scholar 

  31. Houser MT (1990) Assessment of proteinuria using random urine samples. J Pediatr 166:243–247

    Google Scholar 

  32. Kamel KS, Halperin ML (1998) Clinical approach to a patient with hypokalemia or hyperkalemia. Lancet 352:1206–1212

    Google Scholar 

  33. Kaplan SL, Feigin RD (1980) Syndrome of inappropriate antidiuretic hormone in children. Adv Pediatr 27:247–258

    PubMed  CAS  Google Scholar 

  34. Kassirer J P, Schwartz WB (1966) The response of normal man to selective depletion of hydrochloric acid. Am J Med 40:10–18

    Article  PubMed  CAS  Google Scholar 

  35. Kim MS, Herrin JT (2003) Renal conditions. In: Cloherty J P, Eichenwald EC, Stark AR (eds) Manual of neonatal care, 5th edn. Lippincott Williams and Wilkins, Philadelphia, PA, pp 621–642

    Google Scholar 

  36. Lassnig A, Schmidlin D, Mouhieddine M, et al. (2004) Minimal changes in serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15:1597–1605

    Article  CAS  Google Scholar 

  37. Levey AS, Greene T, Kusek J W, et al. (2000) MDRD Study Group. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol 11:A0828

    Google Scholar 

  38. Lorenz JM (2001) Fluid and electrolyte management in the first week of life summary data chart from Polin RA, Yoder MC, Burg FD (eds) Workbook in practical neonatology, 3rd edn. WB Saunders, Philadelphia, PA

    Google Scholar 

  39. Lorenz JM (2002) Fluid and electrolyte therapy in the newborn infant. In: Burg FD, Ingelfinger JR, Wald ER, Pollin RA (eds) Pediatric therapeutics, 17th edn. W.B. Saunders, Philadelphia, PA , pp 29–36

    Google Scholar 

  40. McCullough PA, Adam A, Becker CR, et al. (2006) Risk prediction of contrast induced nephropathy. Am J Cardiol 98:26K–36K

    Article  CAS  Google Scholar 

  41. Morgan TJ (2005) The meaning of acid-base abnormalities in the intensive care unit, Part 3: Effects of fluid administration. Crit Care 9:204–211

    Article  PubMed  Google Scholar 

  42. Murray PT, Palevsky PM (2007) Acute kidney injury. NephSAP 6:281–286

    Google Scholar 

  43. Musch W, Thimpoint J, Vandervelde D, et al. (1995) Combined fractional excretion of sodium and urea better predicts response to saline in hyponatremia than do the usual clinical and biochemical parameters. Am J Med 99:348–355

    Article  PubMed  CAS  Google Scholar 

  44. Oh MS, Carroll HJ (1992) Disorders of metabolism: hypernatremia and hyponatremia. Crit Care Med 20:94–103

    Article  PubMed  CAS  Google Scholar 

  45. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953

    PubMed  CAS  Google Scholar 

  46. Pitts RF (1974) Renal regulation of acid-base balance. In: Physiology the kidney and body fluids, 3rd edn. Year Book Medical Publishers, Chicago, IL, p 204–205

    Google Scholar 

  47. Rastegar A (2007) Use of the delta anion gap/delta bicarbonate ratio in the diagnosis of mixed acid-base disorders. J Am Soc Nephrol 18:2429—2431

    Article  PubMed  CAS  Google Scholar 

  48. Rodriguez-Soriano J (1995) Potassium homeostasis and it's disturbances in children. Pediatr Nephrol 9:364–374

    Article  PubMed  CAS  Google Scholar 

  49. Sargent JD, Stukel TA, Kresel J, et al. (1993) Normal values for random urinary calcium to creatinine ratios in infancy. J Pediatr 123:393–397

    Article  PubMed  CAS  Google Scholar 

  50. Scheinman SJ, Guay-woodford LM, Thacker RV, et al. (1999) Genetic disorders of renal electrolyte transport. N Eng J Med 340:1177–118

    Article  CAS  Google Scholar 

  51. Schwartz GJ, Haycock GB, Edelman CM, et al. (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    PubMed  CAS  Google Scholar 

  52. Schwartz G, Potassium (2004) In: Avner ED, Harmon WE, Niaduet P (eds) Pediatric nephrology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, PA, pp 147–188

    Google Scholar 

  53. Schwartz WB, Relman A (1963) A critique of the parameters used in the evaluation of acid-base disorders. “Whole blood buffer base” and “standard bicarbonate” compared with blood pH in plasma bicarbonate concentration. N Eng J Med 268:1382–1398

    Article  CAS  Google Scholar 

  54. Shemesh O, Golbetz H, Kriss J P, et al. (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838

    Article  PubMed  CAS  Google Scholar 

  55. Siegel NJ, Acute renal failure (1984) In: Brenner BM, Stein JH (eds) Contemporary issues in nephrology: pediatric nephrology, vol. 12. Churchill Livingstone, Edinburgh, pp 297–320

    Google Scholar 

  56. Siegel SR, Oh W (1976) Renal function as a marker of human fetal maturation. Acta Pediatr Scand 65:481–485

    Article  CAS  Google Scholar 

  57. Siggaard-Anderson O, Engel K (1960) A new acid-base nom-ogram, an improved method for calculation of the relevant blood acid-base data. Scand J Clin Lab Invest 12:177–186

    Article  Google Scholar 

  58. Siggaard-Andersen O (1962) The pH-log pCO2 blood acid-base nomogram revised. Scand Clin Lab Invest 14:598–604

    Article  Google Scholar 

  59. Siggaard-Anderson O (1963) Blood acid-base alignment nomogram. Scales for pH, PCO2, base excess of whole blood of different hemoglobin concentrations. Plasma bicarbonate and plasma total CO2. Scand J Clin Lab Invest 15:211–217

    Article  Google Scholar 

  60. Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as a measure of non-respiratory acid-base disturbance. Acta Anesthesiol Scand Suppl 107:123–128

    Article  CAS  Google Scholar 

  61. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    PubMed  CAS  Google Scholar 

  62. Stonestreet BS, Rubin L, Pollak A, et al. (1980) Renal function of low birth weight infants with hyperglycemia and glucosuria produced by glucose infusions. Pediatrics 66:561–567

    PubMed  CAS  Google Scholar 

  63. Story DA, Morimatsu H, Bellomo R (2007) The effect of albumin concentration on plasma sodium and chloride measurements in critically ill patients. Anesth Analg 104:893–897

    Article  PubMed  CAS  Google Scholar 

  64. Tsai JJ, Yuen JY, Kumar VA , et al. (2005) Comparison and interpretation of urinalysis performed by a nephrologist versus a hospital based clinical laboratory. Am J Kidney Dis 46:820–829

    Article  PubMed  Google Scholar 

  65. Wang Y, Cui Z, Fan M (2007) Hospital acquired and community acquired acute renal failure in hospitalized Chinese: the 10-year review. Ren Fail 29:163–168

    Article  PubMed  CAS  Google Scholar 

  66. Ward RT, Coltin DM, Meade PC, et al. (2004) Serum levels of calcium in albumin in survivors versus non-survivors after critical injury. J Crit Care 19:54–64

    Article  PubMed  CAS  Google Scholar 

  67. White PC (1994) Disorders of aldosterone biosynthesis and action. N Engl J Med 331:250–258

    Article  PubMed  CAS  Google Scholar 

  68. Winters RW, Dell RB (1962) Clinical physiology of metabolic acidosis. Postgrad Med 31:161–168

    PubMed  CAS  Google Scholar 

  69. Xie J, Craig L, Cobb MH, et al. (2006) Role of withno-lysine [K] kinases in the pathogenesis of Gordon's syndrome. Pediatr Nephrol 21:1231–1236

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mistry, K., Herrin, J.T. (2009). Tools for the Diagnosis of Renal Disease. In: Kiessling, S.G., Goebel, J., Somers, M.J.G. (eds) Pediatric Nephrology in the ICU. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74425-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74425-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74423-8

  • Online ISBN: 978-3-540-74425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics