Skip to main content

Abstract

Measurements of the charge and magnetic form factors of the nucleon present a sensitive test of nucleon models and QCD-inspired theories. A precise knowledge of the neutron form factors at low Q 2 is also essential to reduce the systematic errors of parity-violation experiments. At the MIT-Bates Linear Accelerator Center, the nucleon form factors have been measured by means of scattering of polarized electrons from vector-polarized hydrogen and deuterium. The experiment used the longitudinally polarized stored electron beam of the MIT-Bates South Hall Ring along with an isotopically pure, highly vector-polarized internal atomic hydrogen and deuterium target provided by an atomic beam source. The measurements have been carried out with the symmetric Bates Large-Acceptance Spectrometer Toroid (BLAST) with enhanced neutron detection capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Friedrich, T. Walcher, Eur. Phys. J. A 17, 607 (2003).

    Article  ADS  Google Scholar 

  2. A. Faessler, Th. Gutsche, V.E. Lyubovitskij, K. Pumsaard, Phys. Rev. D 73, 114021 (2006).

    Article  ADS  Google Scholar 

  3. D.S. Armstrong et al., Phys. Rev. Lett. 95, 092001 (2005).

    Article  ADS  Google Scholar 

  4. T.W. Donnelly, A.S. Raskin, Ann. Phys. 169, 247 (1986).

    Article  ADS  Google Scholar 

  5. D. Cheever et al., Nucl. Instrum. Methods A 556, 410 (2006); L.D. van Buuren et al., Nucl. Instrum. Methods A 474, 209 (2001).

    Article  ADS  Google Scholar 

  6. C.B. Crawford, PhD Thesis, Massachusetts Institute of Technology (2005).

    Google Scholar 

  7. M. Jones et al., Phys. Rev. Lett. 84, 1398 (2000).

    Article  ADS  Google Scholar 

  8. O. Gayou et al., Phys. Rev. Lett. 88, 092301 (2002).

    Article  ADS  Google Scholar 

  9. V. Punjabi et al., Phys. Rev. C 71, 055202 (2005).

    Article  ADS  Google Scholar 

  10. O. Gayou et al., Phys. Rev. C 64, 038202 (2001).

    Article  ADS  Google Scholar 

  11. S. Dieterich et al., Phys. Lett. B 500, 47 (2001).

    Article  ADS  Google Scholar 

  12. T. Pospischil et al., Eur. Phys. J. A 12, 125 (2001).

    Article  ADS  Google Scholar 

  13. B. Milbrath et al., Phys. Rev. Lett. 80, 452 (1998); 82, 2221 (1999)(E).

    Article  ADS  Google Scholar 

  14. G. Holzwarth, Z. Phys. A 356, 339 (1996).

    ADS  Google Scholar 

  15. E.L. Lomon, Phys. Rev. C 66, 045501 (2002).

    Article  ADS  Google Scholar 

  16. H.-W. Hammer, Ulf-G. Meissner, Eur. Phys. J. A 20, 469 (2004).

    Article  ADS  Google Scholar 

  17. F. Cardarelli, S. Simula, Phys. Rev. C 62, 065201 (2000); S. Simula, e-print nucl-th/0105024.

    Article  ADS  Google Scholar 

  18. S. Rock et al., Phys. Rev. Lett. 49, 1139 (1982).

    Article  ADS  Google Scholar 

  19. R.G. Arnold et al., Phys. Rev. Lett. 61, 806 (1988).

    Article  ADS  Google Scholar 

  20. A. Lung et al., Phys. Rev. Lett. 70, 718 (1993).

    Article  ADS  Google Scholar 

  21. K.M. Hanson et al., Phys. Rev. D 8, 753 (1973).

    Article  ADS  Google Scholar 

  22. P. Markowitz et al., Phys. Rev. C 48, R5 (1993).

    Article  ADS  Google Scholar 

  23. H. Anklin et al., Phys. Lett. B 336, 313 (1994).

    Article  ADS  Google Scholar 

  24. E.E.W. Bruins et al., Phys. Rev. Lett. 75, 21 (1995).

    Article  ADS  Google Scholar 

  25. G. Kubon et al., Phys. Lett. B 524, 26 (2002).

    Article  ADS  Google Scholar 

  26. H. Anklin et al., Phys. Lett. B 428, 248 (1998).

    Article  ADS  Google Scholar 

  27. H. Gao et al., Phys. Rev. C 50, R546 (1994).

    Article  ADS  Google Scholar 

  28. W. Xu et al., Phys. Rev. Lett. 85, 2900 (2000).

    Article  ADS  Google Scholar 

  29. W. Xu et al., Phys. Rev. C 67, R012201 (2003).

    Article  ADS  Google Scholar 

  30. J.L. Friar et al., Phys. Rev. C 42, 2310 (1990).

    Article  ADS  Google Scholar 

  31. G. Holzwarth, Z. Phys. A 356, 339 (1996).

    ADS  Google Scholar 

  32. G.A. Miller, Phys. Rev. C 66, 032201 (2002).

    Article  ADS  Google Scholar 

  33. H. Arenhövel, W. Leidemann, E.L. Tomusiak, Eur. Phys. J. A 23, 147 (2005).

    Article  ADS  Google Scholar 

  34. D.I. Glazier et al., Eur. Phys. J. A 24, 101 (2005) and references therein.

    Article  ADS  Google Scholar 

  35. S. Galster et al., Nucl. Phys. B 32, 221 (1971).

    Article  ADS  Google Scholar 

  36. V. Ziskin, PhD Thesis, Massachusetts Institute of Technology (2005).

    Google Scholar 

  37. E. Geis, PhD Thesis, Arizona State University (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Alarcona, R., BLAST Collaboration. (2007). Nucleon form factors and the BLAST experiment. In: de Jager, K., et al. Proceedings of The 3rd Workshop From Parity Violation to Hadronic Structure and more.... Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74413-9_19

Download citation

Publish with us

Policies and ethics