Skip to main content

A Parametric Study of Low Reynolds Number Blood Flow in a Porous, Slowly Varying, Stenotic Artery with Heat Transfer

  • Conference paper
Mathematical Modeling, Simulation, Visualization and e-Learning
  • 1205 Accesses

Abstract

A simple multipole expansion method for analytically calculating the energy levels and the corresponding wave functions in a class of chaotic cavities is presented in this work. We will present results for the case when objects, which might be perfect electric conductors and/or dielectrics, are located inside the cavity. This example is demonstrative of typical experiments used in chaotic cavities to study the probabilistic eigenvalue distribution when objects are inserted into the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. R. Bestman, Pulsatile flow in heated porous channel, 25(5), (1982), 675-682.

    MATH  Google Scholar 

  2. P. Latinopoulos and J. Ganoulis, Numerical simulation of pulsatile flow in constricted axi-symmetric tubes, Appl. Math. Modelling, 6 February (1982), 55-60.

    Google Scholar 

  3. J. C. Misra and S. Chakravarty, Flow in arteries in the presence of stenosis, J. Biomechamics, 19(11), (1986), 907-918.

    Article  Google Scholar 

  4. K. Haldar, Oscillatory flow of blood in a stenosed artery, Bull. Math. Bio., 49(3), (1987),279-287.

    MATH  MathSciNet  Google Scholar 

  5. J. K. Misra and R. S. Chauhan, A study of pulsatile blood flow in a tube with pulsating walls, Acta Physica Hungarica, 67(1-2), (1990), 123-134.

    Google Scholar 

  6. K. Haldar and S. N. Ghosh, Effect of a magnetic field on blood flow through an indented tube in the presence of erythrocytes, Indian J. Pure Appl. Math., 25 (3),(1994), 345-352.

    MATH  Google Scholar 

  7. S. Cavaleanti, Hemodynamics of an artery with mild stenosis, J. Biomech., 28(4), (1995),387-399.

    Article  Google Scholar 

  8. T.-K. Hung and T. M.-C. Tsai, Pulsatile blood flows in stenotic artery, J. Eng. Mech., September (1998), 890-896.

    Google Scholar 

  9. G. Tay and A. Ogulu, Low Reynolds number flow in a constricted tube under a time-dependent pressure gradient, J. Fizik Malaysia, 18(3), (1997), 105-112.

    Google Scholar 

  10. K. Vajravelu, K. Ramesh, S. Sreenadh and P. V. Arunachalam, Pulsatile flow between permeable beds, Int. J. Nonlinear Mech., 38, (2003), 999-1005.

    Article  MATH  Google Scholar 

  11. N. Filipovic and M. Kojic, Computer Simulations of blood flow with mass transport through the carotid artery bifurcation, Theoret. App. Mech., 31(1), (2004),1-33.

    Article  Google Scholar 

  12. A. Ogulu and T. M. Abbey, Simulation of heat transfer on an oscillatory blood flow in an indented porous artery, Int. Comm. Heat Mass Transfer, 32, (2005), 983-989.

    Article  Google Scholar 

  13. P. K. Mandal, An unsteady analysis of non-Newtonian blood flow through tapered arteries with stenosis, Int. J. Nonlinear Mech., 40, (2005), 151-164.

    Article  MATH  Google Scholar 

  14. A. Ogulu, Effect of heat generation on low Reynolds number fluid and mass transport in a single lymphatic blood vessel with uniform magnetic field, Int. Comm. Heat Mass Transfer, 33, (2006), 790-799.

    Article  Google Scholar 

  15. M. J. Manton, Low Reynolds number flow in a slowly varying axisymmetric tubes, J. fluid Mech., 49, (1971), 451.

    Article  MATH  Google Scholar 

  16. A. Ogulu and A. R. Bestman, Deep heat muscle treatment: A mathematical model I, Acta Physica Hungarica, 73, (1993), −16.

    Google Scholar 

  17. A. Ogulu and A. R. Bestman, Deep heat muscle treatment: A mathematical model II, Acta Physica Hungarica, 73, (1993), 17-27.

    Google Scholar 

  18. M. El-Shahed, Pulsatile blood flow through a stenosed porous medium under periodic body acceleration, Appl. Math. Comp., 138, (2003), 479-488.

    Article  MATH  MathSciNet  Google Scholar 

  19. Elbarbary and Elgazery, Chebyshev finite difference method for the effect of variable viscosity on magneto micro-polar fluid flow with radiation, Int. Comm. Heat Mass Transfer, 31(3), (2000), 409.

    Google Scholar 

  20. A. R. Bestman, Unsteady low Reynolds number flow in a heated tube of slowly varying section, J. Austral Math Soc. B179, (1988).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ogulu, A. (2008). A Parametric Study of Low Reynolds Number Blood Flow in a Porous, Slowly Varying, Stenotic Artery with Heat Transfer. In: Konaté, D. (eds) Mathematical Modeling, Simulation, Visualization and e-Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74339-2_11

Download citation

Publish with us

Policies and ethics