Skip to main content

Perennially cold environments in which temperatures remain below 5°C are common throughout the biosphere (Margesin and Häggblom 2007). In these habitats, the persistent cold temperatures are often accompanied by freeze—thaw cycles, extreme fluctuations in irradiance (including ultraviolet radiation), and large variations in nutrient supply and salinity. As a result of these constraints, polar and alpine environments contain a reduced biodiversity, with prokaryotes contributing a major component of the total ecosystem biomass as well as species richness. Cyanobacteria are of particular interest because they often represent the predominant phototrophs in such ecosystems. Current research shows that a diverse range of cyanobacteria can be found in polar and alpine habitats, and that they show a remarkable ability to tolerate the abiotic stresses that prevail in these cold environments. Their presence was already observed during the early explorations of the polar regions at the end of the nineteenth century (Vincent 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018.

    Article  CAS  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Van Stockum WP and Zoon, The Hague, Netherlands.

    Google Scholar 

  • Billi D, Friedmann EI, Helm RF, Potts M (2001) Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bac teriol 183:2298–2305.

    CAS  Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130.

    Article  CAS  Google Scholar 

  • Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hilds, Eastern Antarctica. Environ Microbiol 2:227–237.

    Article  CAS  PubMed  Google Scholar 

  • Broady P (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335.

    Article  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the oscillatoriales (cyanobacteria). J Phycol 41:421–438.

    Article  CAS  Google Scholar 

  • Castenholz RW (1992) Species usage, concept, and evolution in the Cyanobacteria (blue-green algae). J Phycol 28:737–745.

    Article  Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology (The archaea and the deeply branching and phototrophic bacteria), vol 1. Springer, New York, pp 473–599.

    Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-Radiation. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 591–611.

    Google Scholar 

  • Christner BC, Kvitko II, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183.

    CAS  PubMed  Google Scholar 

  • Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414.

    Article  CAS  PubMed  Google Scholar 

  • Comte K, Sabacká M, Carré-Malouka A, Elster J, Komárek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376.

    Article  CAS  PubMed  Google Scholar 

  • de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867.

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395.

    Article  PubMed  CAS  Google Scholar 

  • Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431.

    Article  Google Scholar 

  • Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90.

    Article  CAS  PubMed  Google Scholar 

  • Fouilland E, Descolas-Gros C, Courties C, Pons V (1999) Autotrophic carbon assimilation and biomass from size-fractionated phytoplankton in the surface waters across the subtropical frontal zone (Indian Ocean). Polar Biol 21:90–96.

    Article  Google Scholar 

  • Friedmann EI (1986) The Antarctic cold desert and the search for traces of life on Mars. Adv Space Res 6:265–268.

    Article  CAS  PubMed  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig.

    Google Scholar 

  • Gibson JAE, Wilmotte A, Taton A, Van de Vijver B, Beyens L, Dartnall HJG (2006) Biogeography trends in Antarctic lake communities. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, Dordrecht, pp 71–99.

    Chapter  Google Scholar 

  • Gordon DA, Priscu J, Giovannoni S (2000) Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb Ecol 39:197–202.

    PubMed  Google Scholar 

  • Hawes I, Howard-Williams C, Pridmore RD (1993) Environmental control of microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Arch Hydrobiol 127:271–287.

    Google Scholar 

  • Hawes I, Schwarz, AM (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J Phycol 37:5–15.

    Article  CAS  Google Scholar 

  • Howard-Williams C, Pridmore RD, Downes MT, Vincent WF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 1:125–131.

    Article  Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565.

    Article  PubMed  Google Scholar 

  • Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne microbial biodiversity over Peninsular Antarctica. Cell Mol Biol 50:537–542.

    CAS  PubMed  Google Scholar 

  • Jungblut A-D, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529.

    Article  CAS  PubMed  Google Scholar 

  • Jungblut A-D, Hoeger SJ, Mountfort D, Hitzfeld BC, Dietrich DR, Neilan BA (2006) Characterization of microcystin production in an Antarctic cyanobacterial mat community. Toxicon 47: 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Komárek J (1999) Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica—a survey. Arch Hydrobiol 94:181–193.

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil Oscillatoriales, Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  • Marchant HJ, Davidson AT, Wright SW (1987) The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Proc NIPR Symp Polar Biol 1:1–9.

    Google Scholar 

  • Margesin R, Häggblom M (2007) Thematic issue: Microorganisms in cold environments. FEMS Microbiol Ecol 59:215–216.

    Article  CAS  Google Scholar 

  • Mataloni G, Tell G (2002) Microalgal communities from ornithogenic soils at Cierva Point, Antarctic Peninsula. Polar Biol 25:488–491.

    Article  Google Scholar 

  • McClintic AS, Casamatta DA, Vis ML (2003) A survey of algae from montane cloud forest and alpine streams in Bolivia: macroalgae and associated microalgae. Nova Hedwigia 76:363–379.

    Article  Google Scholar 

  • Mez K, Hanselmann K, Preisig HR (1998) Environmental conditions in high mountain lakes containing toxic benthic cyanobacteria. Hydrobiologia 368:1–15.

    Article  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyashi S (1996) Chlorophyll d as a major pigment. Nature 383:402.

    Article  CAS  Google Scholar 

  • Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia 123:173–197.

    Google Scholar 

  • Mueller DR, Vincent WF, Jeffries MO (2003) Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys Res Lett 30, 2031.

    Article  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremophiles, extremotrophs and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87.

    Article  CAS  PubMed  Google Scholar 

  • Nadeau TL, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic Oscillatoriaceans (cyanobacteria). J Phycol 37:650–654.

    Article  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122.

    Article  PubMed  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29.

    Article  Google Scholar 

  • Oren A (2000) Salt and Brines. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 281–306.

    Google Scholar 

  • Oren A (2004) A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902.

    Article  PubMed  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098.

    Article  CAS  PubMed  Google Scholar 

  • Rajaniemi P, Hrouzek P, Kastovska K, Willame R, Rantala A, Hoffmann L, Komarek J and Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26.

    Article  CAS  PubMed  Google Scholar 

  • Rott E, Cantonati M, Füreder L, Pfister P (2006) Benthic algae in high altitude streams of the Alps-a neglected component of the aquatic biota. Hydrobiologia 562:195–216.

    Article  Google Scholar 

  • Rudi K, Skulberg OM, Larsen F, Jakobsen KS (1997) Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the region V6, V7 and V8. Appl Environ Microbiol 63:2593–2599.

    CAS  PubMed  Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 13–35.

    Google Scholar 

  • Sigler WV, Bachofen R, Zeier J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627.

    Article  CAS  PubMed  Google Scholar 

  • Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184.

    Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421.

    Article  PubMed  Google Scholar 

  • Sommaruga R, Garcia-Pichel F (1999) UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Arch Hydrobiol 144:255–269.

    CAS  Google Scholar 

  • Stackebrandt E, Göbel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849.

    Article  CAS  Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko, VN, Kondratieva, EN, Eimhjellen, KE, Whittenbury, R, Gherma RL and Truper HG (1978) Proposal to place nomenclature of Cyanobacteria (Blue-Green-Algae) under rules of International Code of Nomenclature of Bacteria. Int J Syst Bacteriol 28:335–336.

    Article  Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of crycoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596.

    Google Scholar 

  • Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high latitude cyanobacteria. New Phytol 142:315–323.

    Article  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (Mc Murdo Dry Valleys, Antarctica): A morphological and molecular approach. Appl Environ Microbiol 69:5157–5169.

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Balhasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006a) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289.

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006b) Polyphasic study of antarctic cyanobacterial strains. J Phycol 42:1257–1270.

    Article  CAS  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge.

    Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 321–340.

    Google Scholar 

  • Vincent WF, Bowman JP, Rankin LM, McMeekin TA (2000) Phylogenetic diversity of picocyanobacteria in Arctic and Antarctic ecosystems. In: Bell C, Brylinsky M, Johnson-Green M (eds) Microbial biosystems: new frontiers. 8th Int Symp Microbial Ecol. Atlantic Canada Society for Microbial Ecology, Halifax, pp 317–322.

    Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004a) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the High Arctic. Cryobiol 48:103–112.

    Article  Google Scholar 

  • Vincent WF, Mueller D, Van Hove P, Howard-Williams C (2004b) Glacial periods on early Earth and implications for the evolution of life. In: Seckbach J (eds) Origins: Genesis, evolution and diversity of life. Kluwer, Dordrecht, pp 481–501.

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer (in press).

    Google Scholar 

  • Vopel K, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51:1801–1812.

    Article  Google Scholar 

  • Wait BR, Webster-Brown JG, Brown KR, Healy M, Hawes I (2006) Chemistry and stratification of Antarctic meltwater ponds I: coastal ponds near Bratina Island, McMurdo Ice Shelf. Antarct Sci 18:515–524.

    Article  Google Scholar 

  • Waleron M, Waleron K, Vincent W, Wilmotte A (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol Ecol 59:356–365.

    Article  CAS  PubMed  Google Scholar 

  • Welker M, von Döhren H (2006) Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. FEMS Microbiol Ecol 30:530–563.

    CAS  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290.

    Article  CAS  PubMed  Google Scholar 

  • Wharton RA, Mckay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503.

    Article  PubMed  Google Scholar 

  • Wilmotte A, Demonceau C, Goffart A, Hecq J-H, Demoulin V, Crossley AC (2002) Molecular and pigment studies of the picophytoplankton in a region of Southern Ocean (42–54°S, 141–144°E) in March 1998. Deep-Sea Res II 49:3351–3363.

    Article  CAS  Google Scholar 

  • Zielke M, Solheim B, Spjelkavik S, Olsen RA (2005) Nitrogen fixation in the High Arctic: role of vegetation and environmental conditions. Arct Antarct Alp Res 37:372–378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zakhia, F., Jungblut, AD., Taton, A., Vincent, W.F., Wilmotte, A. (2008). Cyanobacteria in Cold Ecosystems. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_8

Download citation

Publish with us

Policies and ethics