Skip to main content

Anaerobic Bacteria and Archaea in Cold Ecosystems

  • Chapter
Psychrophiles: from Biodiversity to Biotechnology

Permanently cold environments are very common on Earth. For example, the average temperature in bottom waters of the largest fraction of the world oceans is 5°C or less and including terrestrial habitats about 80% of the Earth's biosphere is to be found in permanently cold habitats (Russell 1990). In addition to being cold, many of these environments are also oxygen-free, thus supporting exclusively facultative or obligately anaerobic microbial life. Anoxic permanently cold environments are very diverse and include the marine sea floor (Rysgaard et al. 1998; Sagemann et al. 1998; Bowman et al. 2003; Vandieken et al. 2006b), microbial mats (Mueller et al. 2005; Fernández-Valiente et al. 2007), endolithic communities in sandstones (Friedmann 1982), permafrost soils of the Arctic and Antarctic regions (Kobabe et al. 2004; Gilichinsky et al. 2005; Steven et al. 2007), and chilled food (Broda et al. 2000a, 2000b, 2002). It has also been demonstrated that these habitats harbor extensive microbial communities, including many microorganisms that are phylogenetically affiliated with obligately anaerobic organisms in culture (Ravenschlag et al. 1999; Purdy et al. 2003; Ganzert et al. 2007). Despite their ecological and economical significance very little is known about anaerobic bacteria and archaea that live in these environments and the mechanisms by which they thrive or survive under in situ conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alam SI, Dube S, Reddy GSN, Bhattacharya BK, Shivaji S, Singh L (2005) Purification and characterization of extracellular protease produced by Clostridium sp. from Schirmacher oasis, Antartica. Enzyme Microbiol Technol 36:824–831.

    Article  CAS  Google Scholar 

  • Alam SI, Dixit A, Reddy GSN, Dube S, Palit M, Shivaji S, Singh L (2006) Clostridium schirmacherense sp. nov., an novel obligately anaerobic, proteolytic, psychrophilic bacterium isolated from lake sediment of Schirmacher Oasis, Antarctica. Int J Syst Evol Microbiol 56:715–720.

    Article  CAS  PubMed  Google Scholar 

  • Akila G, Chandra TS (2003) A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS Microbiol Lett 219:63–67.

    Article  CAS  PubMed  Google Scholar 

  • Arnosti C, Jørgensen BB (2003) High activity and low temperature optima of extracellular enzymes in arctic sediments: implications for carbon cycling by heterotrophic microbial communities. Mar Ecol Prog Ser 249:15–24.

    Article  CAS  Google Scholar 

  • Arnosti C, Finke N, Larsen O, Ghobrial S (2005) Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates. Geochim Cosmochim Acta 69:2309–2320.

    Article  CAS  Google Scholar 

  • Bak F (1988) Sulfatreduzierende Bakterien und ihre Aktivität im Litoralsediment der unteren Güll (Überlinger See). PhD Thesis, Universität Konstanz.

    Google Scholar 

  • Bowman JP, McCammon SA, Gibson JAE, Robertson L, Nichols PD (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69:2448–2462.

    Article  CAS  PubMed  Google Scholar 

  • Broda DM, Lawson PA, BellRG, Musgrave DR (1999) Clostridium frigidicarnis sp. nov., a psychrotolerant bacterium associated with ‘blown pack’spoilage of vacuum-packed meats. Int J Syst Ecol Micobiol 49:1539–1550.

    Article  CAS  Google Scholar 

  • Broda DM, Saul DJ, Lawson PA, Bell RG, Musgrave DR (2000a) Clostridium gasigense sp. nov., a psychrophile causing spoilage of vacuum-packed meat. Int J Syst Evol Microbiol 50:107–118.

    CAS  PubMed  Google Scholar 

  • Broda DM, Musgrave DR, Bell RG (2000b) Use of restriction fragment length polymorphism analysis to differentiate strains of psychrophilic and psychrotrophic clostridia associated with ‘blown pack’ spoilage of vacuum-packed meats. J Appl Microbiol 88:107–116.

    Article  CAS  PubMed  Google Scholar 

  • Broda DM, Bell RG, Boerema JA, Musgrave DR (2002) The abattoir source of culturable psychrophilic Clostridium spp causing ‘blown pack’ spoilage of vacuum-packed chilled venison. J Appl Microbiol 93:817–824.

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nature Rev Microbiol 4:331–343.

    Article  CAS  Google Scholar 

  • Collins MD, Rodrigues UM, Dainty RH, Edwards RA, Roberts TA (1992) Taxonomic studies on a psychrophilic Clostridium from vacuum-packed beef: Description of Clostridium estertheticum sp. nov. FEMS Microbiol Lett 96:235–240.

    Article  CAS  Google Scholar 

  • Conrad R, Bak F, Seitz HJ, Thebrath B, Mayer HP, Schütz H (1989) Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Ecol 62:285–294.

    Article  CAS  Google Scholar 

  • Dyrset N, Bentzen G, Arnesen T, Larsen H (1984) A marine, psychrophilic bacterium of the bacteroidaceae type. Arch Microbiol 139:415–420.

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes:hot topics in cold adaptation. Nature Rev Microbiol 1:200–208.

    Article  CAS  Google Scholar 

  • Fernández-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livington Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385.

    Article  PubMed  CAS  Google Scholar 

  • Finne G, Matches JR (1974) Low temperature clostridia from marine sediments. Can J Microbiol 20:1639–1645.

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Rohde M (1991) An obligately anaerobic, coiled bacterium from Ace Lake, Antarctica. J Gen Microbiol 137:2191–2196.

    Google Scholar 

  • Franzmann PD, Dobson SJ (1992) Cell wall-less, free-living spirochetes in Antarctica. FEMS Microbiol Lett 97:289–292.

    Article  CAS  Google Scholar 

  • Franzmann PD, Dobson SJ (1993) The phylogeny of bacteria from a modern Antarctic refuge. Antarct Sci 5:267–270.

    Article  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W, Conway de Macario EC, Rohde M (1992) A methanogenic Archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581.

    Google Scholar 

  • Franzmann PD, Liu Y, Blackwill DL, Aldrich HC, Conway de Macaria EC, Boone DR (1997) Methanogenium frigidum sp. nov, a psychrophilic H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EJ (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053.

    Article  PubMed  CAS  Google Scholar 

  • Ganzert L, Jurgens G, Münster U, Wagner D (2007) Methanogenic communities in permafrost-affected soils of the Laptev sea coast, Siberian arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59:476–488.

    Article  CAS  PubMed  Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichius K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiveristy of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128.

    Article  CAS  PubMed  Google Scholar 

  • Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R (2004a) Cold adaptation of the Antarctic archeon, Methanococcoides burtonii, assessed by proteomics using ICAT. J Proteome Res 4:473–480.

    Article  CAS  Google Scholar 

  • Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004b) A proteomic determination of cold adaptation in the Antarctic archeaon, Methanococcoides burtonii. Mol Microbiol 53:309–321.

    Article  CAS  PubMed  Google Scholar 

  • Harder W, Veldkamp H (1971) Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek J Microbiol Serol 37:51–63.

    Article  CAS  Google Scholar 

  • Herbert RA (1976) Isolation and identification of phototrosynthetic bacteria (Rhodospirillaceae) from Antarctic marine and fresh water sediments. J Appl Bacteriol 41:75–80.

    CAS  PubMed  Google Scholar 

  • Herbert RA, Tanner AC (1977) The isolation and some characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from Antarctic marine sediments. J. Appl Bacteriol 43:437–445.

    Google Scholar 

  • Holmes DE, Nicoli JS, Bond DR, Lovley DR (2004) Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov. sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030.

    Article  CAS  PubMed  Google Scholar 

  • Isaksen MF, Jørgensen BB (1996) Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl Environ Microbiol 62:408–414.

    CAS  PubMed  Google Scholar 

  • Isaksen MF, Teske A (1996) Desulforhopalus vacuolatus gen. nov. sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolates from a temperate estuary. Arch Microbiol 166:160–168.

    Article  CAS  Google Scholar 

  • Kalchayanand N, Ray B, Field RA (1993) Characterization of psychrotrophic Clostridium laramie causing spoilage of vacuum-packaged refrigerated fresh and roasted beef. J Food Prot 56:13–17.

    Google Scholar 

  • Kendall MM, Liu Y, Boone DR (2006) Butyrate- and propionate-degrading syntrophs from permanently cold marine sediments in Skan Bay, Alaska, and description of Algorimarina butyrica gen. nov. sp. nov. FEMS Microbiol Lett 262:107–114.

    Article  CAS  PubMed  Google Scholar 

  • Knoblauch C, Jørgensen BB (1999) Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environ Microbiol 1:457–467.

    Article  CAS  PubMed  Google Scholar 

  • Knoblauch C, Jørgensen BB, Harder J (1999a) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic sediments. Appl Environ Microb 65:4230–4233.

    CAS  Google Scholar 

  • Knoblauch C, Sahm K, Jørgensen BB (1999b) Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643.

    Article  CAS  PubMed  Google Scholar 

  • Kobabe S, Wagner D, Pfeiffer E-M (2004) Characterization of microbial community cpmposition af o Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 50:13–23.

    Article  CAS  PubMed  Google Scholar 

  • Könneke M, Widdel F (2003) Effect of growth temperature on the cellular fatty acids in sulphate-reducing bacteria. Environ Microbiol 5:1064–1070.

    Article  PubMed  CAS  Google Scholar 

  • Kotsyurbenko OR, Nozhevnikova AN, Osipov GA, Kostrinka NA, Lysenko AM (1995a) A new psychroactive bacterium Clostridium fimetarium, isolated from cattle manure digested at low temperature. Microbiology (English translation of Mikrobiologiya 64:804–810) 64:681–686.

    Google Scholar 

  • Kotsyurbenko OR, Simankova MV, Nozhevnikova AN, Zhilina TN, Bolotina NP, Lysenko AM, Osipov GA (1995b) New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A.paludosum sp. nov., A fimetarium sp. nov. Arch Microbiol 163:29–34.

    Article  CAS  Google Scholar 

  • Kotsyurbenko OR, Glagolev MV, Nozhevnikova AN, Conrad R (2001) Competition between homoactogenetic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol Ecol 38:153–159.

    Article  CAS  Google Scholar 

  • Lim J, Thomas T, Cavicchiolli R (2000) Low temerpature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcus burtonii. J Mol Biol 297:553–567.

    Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286.

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an antarctic microbial mat. Arch Microbiol 173:269–277.

    Article  CAS  PubMed  Google Scholar 

  • McGurie AJ, Franzmann PD, McMeekin TA (1987) Flectobacillus glomeratus sp. nov., a curved, nonmotile, pigmented bacterium isolated form Antarctica marine environments. Syst Appl Micobiol 9:265–272.

    Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167.

    CAS  PubMed  Google Scholar 

  • Mountfort DO, Rainey FA, Burghardt J, Kasper HF, Stackebrandt E (1997) Clostridium vincentii sp. nov., a new obligately anaerobic, saccharolytic, psychrophilic bacterium isolated from low-salinity pond sediment of the McMurdo ice shelf, Antartica. Arch Microbiol 167:54–60.

    Article  CAS  PubMed  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53: 73–87.

    Article  CAS  PubMed  Google Scholar 

  • Nichols PD, Franzmann PD (1992) Unsaturated diether phospholipids in the antarctic methanogen Methanococcoides burtonii. FEMS Microbiol Lett 98:205–208.

    Article  CAS  Google Scholar 

  • Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW, Lovley DR (2005) Geobacter bemidjiensis sp. nov., and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674.

    Article  CAS  PubMed  Google Scholar 

  • Nozhevnikova AN, Simankova MV, Parshina SN, Kotsyurbenko OR (2001) Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments. Water Sci Technol 44:41–48.

    CAS  PubMed  Google Scholar 

  • Paarup M, Friedrich MW, Tindall BJ, Finster K (2006) Characterization of the psychrotolerant acetogen strain Syr A5 and the emended description of the species Acetobacterium carbonolicum. Antonie van Leeuwenhoek 89:55–69.

    Article  CAS  PubMed  Google Scholar 

  • Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal population in contrasting antarctic sediments. Appl Environ Microbiol 69:3181–3191.

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Brüchert V, Amann J, Könneke M (2002) Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417.

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glöckner F-O, Lupas AN, Amann R, Klenk H-P (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902.

    Article  CAS  PubMed  Google Scholar 

  • Ratkowsky PA, Lowry RR, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226.

    CAS  PubMed  Google Scholar 

  • Ravenschlag K, Sahm K, Perntahler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989.

    CAS  PubMed  Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B 326:595–608, discussion 608–611.

    Article  CAS  Google Scholar 

  • Rysgaard S, Thamdrup B, Risgaard-Petersen N, et al. (1998) Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 175:261–276.

    Article  CAS  Google Scholar 

  • Sagemann J, Jorgensen BB, Greeff O (1998) Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol J 15: 85–100.

    Article  CAS  Google Scholar 

  • Sass H, Berchtold M, Branke J, König H, Cypionka H, Babenzien H-D (1998) Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. System Appl Microbiol 21:212–219.

    CAS  Google Scholar 

  • Sahm K, Knoblauch C, Amann R (1999) Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine sediments. Appl Environ Microbiol 65:3976–3981.

    CAS  PubMed  Google Scholar 

  • Saunders NFW, Thomas T, Curmi PMG Mattick JS, Kuczek E, Slade R, et al. (2003) Mechanisms of the thermal adaptation revealed from the genomes of the antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588.

    Article  CAS  PubMed  Google Scholar 

  • Scherer S, Neuhaus K (2006) Life at low temperatures. Prokaryotes 1:210–262.

    Article  Google Scholar 

  • Schmitz RA, Daniel R, Deppenmeier U, Gottschalk G (2006) The anaerobic way of life. Prokaryotes 2: 86–101.

    Article  Google Scholar 

  • Schulz S, Conrad R (1996) Influence of temperature on the pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiol Ecol 20:1–14.

    Article  CAS  Google Scholar 

  • Shcherbakova VA, Rivkina EM, Laurinavichius KS, Pecheritsyna SA, Osipov GA, Gilichinsky DA (2004) Physiological characterization of bacteria isolated from water brines within permafrost. Int J Astrobiol 3:37–43.

    Article  CAS  Google Scholar 

  • Shcherbakova VA, Chuvilskaya NA, Rivkina EM, Pecheritsyna SA, Laurinavichius KS, Suzina NE, Osipov GA, Lysenko AM, Gilichinsky DA, Akimenko VK (2005) Novel psychrophilic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles 9:239–246.

    Article  CAS  PubMed  Google Scholar 

  • Simankova MV, Kotsyurbenko OR, Stackebrandt E, Kostrikina NA, Lysenko AM, Osipov GA, Nozhevnikova AN (2000) Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch Microbiol 174:440–447.

    Article  CAS  PubMed  Google Scholar 

  • Simankova MV, Parshina SN, Tourova TP, Kolganova TV, Zehnder AJB, Nozhevnikova AN (2001) Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediment. Syst Appl Microbiol 24:362–367.

    Article  CAS  PubMed  Google Scholar 

  • Simankova MV, Kotsyurbenko OR, Lueders T, Nozhevnikova AN, Wagner B, Conrad R, Friedrich MW (2003) Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26:312–318.

    Article  PubMed  Google Scholar 

  • Singh N, Kendall MN, Liu Y, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55:2531–2538.

    Article  CAS  PubMed  Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an antarctic microbial mat; description of Clostridium frigoris sp. nov., Clostridium lacusfryellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laraniense as Clostridium estertheticum subsp. Laraminese subsp. nov. Int J Syst Evol 53:1019–1029.

    Article  CAS  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, White LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 513–523.

    Google Scholar 

  • Tarpgaard IH, Boetius A, Finster K (2006) Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and description of its physiological response to temperature changes. Antonie van Leeuwenhoek 89:109–124.

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Cavicchioli R (1998) Archeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens. FEBS Letters 439:281–286.

    Article  CAS  PubMed  Google Scholar 

  • Vandieken V, Mussmann M, Niemann H, Jørgensen BB (2006a) Desulforomonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from arctic sediments, Svalbard. Int J Syst Evol Microbiol 56:1133–1139.

    Article  CAS  PubMed  Google Scholar 

  • Vandieken V, Nickel M, Jørgensen BB (2006b) Carbon mineralization in arctic sediments northvest of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways. Mar Ecol Prog Ser 322:15–27.

    Article  CAS  Google Scholar 

  • von Klein D, Arab H, Volker H, Thomm M (2002) Methanosarcina baltica sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6:103–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Finster, K. (2008). Anaerobic Bacteria and Archaea in Cold Ecosystems. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_7

Download citation

Publish with us

Policies and ethics