Skip to main content

Bacteria in Snow and Glacier Ice

  • Chapter

By definition, the cryosphere is the portion of the Earth where water is in solid form as snow or ice. It includes vast areas of sea ice, freshwater ice, glaciers, ice sheets, snow cover and permafrost. Because of the extremely harsh climatic conditions, these frozen environments had been considered for a long time to be devoid of life or serving merely as repositories for wind-transported microorganisms trapped in the ice (Cowan and Tow 2004). However, the increasing number of recent studies on the microbial ecology and diversity of natural ice samples have changed this view. Although still limited, they have shown that permanently frozen environments harbor abundant, live and diverse microorganisms that may be detected and recovered by cultivation. Priscu and Christner (2004) calculated the total number of bacterial cells in the Antarctic and Greenland ice sheets to be 9.61×1025, which corresponds to a significant carbon pool of 2.65×10−3 Pg (1 Pg = 1015 g) and represents a considerable reservoir of microbial diversity. At present, the cryosphere is important not only as an integral part of the global climate system but as one of the major habitable ecosystems of Earth's biosphere and as the best analogue for the search of extraterrestrial life. This chapter presents the current knowledge about the detection, diversity, survival and activity of bacteria in snow and glacier ice. Because this topic has been previously reviewed (Priscu and Christner 2004; Cowan and Tow 2004; Priscu et al. 2007), the focus here will be to outline major earlier findings and to present the most recent advances in glacier ice and snow microbiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. John Wiley & Sons, New York, pp 265–295.

    Google Scholar 

  • Abyzov SS, Bobin NE, Koudryashov BB (1982) Quantitative assessment of microorganisms in microbiological studies of Antarctic glaciers. Biol Bull Acad Sci USSR 9:558–564.

    Google Scholar 

  • Abyzov SS, Philippova SN, Kuznetsov VD (1983) Nocardiopsis antarcticus - a new species of actinomyces, isolated from the ice sheet of the central Antartic glacier. Izv Akad Nauk USSR Ser Biol 4:559–568.

    Google Scholar 

  • Abyzov SS, Barkov NI, Bobin NE, Koudryashov BB, Lipenkov VY, Mitskevich IN, Pashkevich VM, Poglazova MN (1998a) The ice sheet of central Antarctica as an object of study of past ecological events on the earth Izv Akad Nauk USSR Ser Biol 5:610–616.

    Google Scholar 

  • Abyzov SS, Mitskevich IN, Poglazova MN (1998b) Microflora of the deep glacier horizons of Central America. Microbiology 67:451–458.

    CAS  Google Scholar 

  • Abyzov SS, Poglazova MN, Mitskevich IN, Ivanov MV (2005) Common features of microorganisms in ancient layers of the Antarctic ice sheet. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton University Press, Princeton, pp 240–250.

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual cells without cultivation. Microbiol Rev 59:143–169.

    CAS  PubMed  Google Scholar 

  • Amato P, Hennebelle R, Magand O, Sancelme M, Delort A-M, Barbante C, Boutron C, Ferrari C (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 59:255–264.

    Article  CAS  PubMed  Google Scholar 

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10 degrees C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326.

    Article  PubMed  Google Scholar 

  • Barker JD, Sharp MJ, Fitzsimons SJ, Turner RJ (2006) Abundance and dynamics of dissolved organic carbon in glacier systems. Arct Antarct Alp Res 38:163–172.

    Article  Google Scholar 

  • Bauer H, Kasper-Giebl A, Loflund M, Giebl H, Hitenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacterial and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res 64:109–119.

    Article  CAS  Google Scholar 

  • Bay R, Bramall N, Price PB (2005) Search for microbes and biogenic compounds in polar ice using flourescence. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton University Press, Princeton, pp 268–276.

    Google Scholar 

  • Bhatia M, Sharp M, Foght J (2006) Distinct bacterial communities exist beneath a high arctic polythermal glacier. Appl Environ Microbiol 72:5838–5845.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4515–4517.

    Article  Google Scholar 

  • Chaturvedi P, Reddy GSN, Shivaji S (2005) Dyadobacter hamtensis sp. nov. from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 55:2113–2117.

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov. a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56:2765–2770.

    Article  CAS  PubMed  Google Scholar 

  • Christner BC (2002a) Recovery of bacteria from glacial and subglacial environments. Thesis, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Christner BC (2002b) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438.

    Article  CAS  PubMed  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485.

    Article  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577.

    Article  CAS  PubMed  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2002) Isolation and identification of bacteria from ancient and modern ice core archives. In: Casassa G, Sepulveda FV, Sinclair R (eds) Patagonian ice fields. A unique natural laboratory for environmental and climate change studies. Kluwer, New York, pp 9–16.

    Google Scholar 

  • Christner BC, Krivko II BH, Reeve JN (2003a) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183.

    CAS  PubMed  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003b) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436.

    Article  CAS  PubMed  Google Scholar 

  • Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005a) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584.

    Article  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2005b) Classification of bacteria from polar and non polar glacier ice. In: Castello JD, Rogers SO (eds) Life in ancient ice Princeton University Press, Princeton, pp 227–239.

    Google Scholar 

  • Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annual Rev Microbiol 58:649–690.

    Article  CAS  Google Scholar 

  • Darling CA, Siple PA (1941) Bacteria of Antarctica. J Bacteriol 42:83–98.

    CAS  PubMed  Google Scholar 

  • Haldeman DL, Amy PS, Russell CE, Jacobson R (1995) Comparison of drilling and mining as methods for obtaining microbiological samples from the deep subsurface. J Microbiol Methods 21:305–316.

    Article  Google Scholar 

  • Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, D.A. W, R.W. H (eds) Snow ecology. Cambridge University Press, Cambridge, pp 168–228.

    Google Scholar 

  • Jepsen SM, Adams EE, Priscu JC (2006) Fuel movement along grain boundaries in ice. ScienceDirect 45:158–165.

    Google Scholar 

  • Jones HG (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol Process 13:2135–2147.

    Article  Google Scholar 

  • Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian high Arctic. Appl Environ Microbiol 71:1035–1041.

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69: 4282–4284.

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20 degrees C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557.

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20 degrees C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429.

    Article  CAS  PubMed  Google Scholar 

  • Karl DM, Bird DF, Bjõrkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147.

    Article  CAS  PubMed  Google Scholar 

  • Keer JT, Birch L (2003) Molecular methods for assessment of bacterial viability. J Microbiol Meth 53:175–183.

    Article  CAS  Google Scholar 

  • Liu YQ, Yao TD, Kang SC, Jiao NZ, Zeng YH, Shi Y, Luo TW, Jing ZF, Huang SJ (2006) Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest. Chinese Sci Bull 51:1476–1486.

    Article  CAS  Google Scholar 

  • Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172.

    Article  CAS  Google Scholar 

  • Margesin R, Zacke G, Schinner F (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93.

    Article  Google Scholar 

  • Margesin R, Sproer C, Schumann P, Schinner F (2003) Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296.

    Article  CAS  PubMed  Google Scholar 

  • McLean AL (1918) Bacteria of ice and snow in Antarctica. Nature 102:35–39.

    Article  Google Scholar 

  • Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000 year old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818.

    Article  CAS  PubMed  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JB (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland ice core. Appl Environ Microbiol 70:202–213.

    Article  CAS  PubMed  Google Scholar 

  • Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39 °C. Soil Biol Biochem 38:785–794.

    Article  CAS  Google Scholar 

  • Paterson WS (1994) The physics of glaciers, 3rd edn. Elsevier Science, Tarrytown, N.Y.

    Google Scholar 

  • Porazinska DL, Fountain AG, Nylen TH, Tranter M, Virginia RA, Wall DH (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic Antarctic Alpine Res 36:84–91.

    Article  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251.

    Article  CAS  PubMed  Google Scholar 

  • Price PB (2007) Microbial life in glacier ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231.

    Article  CAS  PubMed  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, survival and maintenance. Proc Natl Acad Sci USA 101:4631–4636.

    Article  CAS  PubMed  Google Scholar 

  • Price PB, Nagornov OV, Bay R, Chirkin D, He Y, Miocinovic P, Richards A, Woschnagg K, Koci B, Zagorodnov V (2002) Temperature profile for glacial ice at the South pole: Implications for life in a nearby subglacial lake. Proc Natl Acad Sci USA 99:7844–7847.

    Article  CAS  PubMed  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 130–145.

    Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2143.

    Article  CAS  PubMed  Google Scholar 

  • Priscu JC, Christner BC, Foreman CM, Royston-Bishop G (2007) Biological material in ice cores. In: Encyclopedia of Quaternary Sciences. Elsevier, in press.

    Google Scholar 

  • Rogers SO, Theraisnathan V, Ma LJ, Zhao Y, Zhang G, Shin SG, Castelo JD, Starmer WT (2004) Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl Environ Microbiol 70:2540–2544.

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Ma LJ, Zhao Y, Theraisnathan V, Shin SG, Zhang G, Catranis CM, Starmer WT, Castelo JD (2005) Recommendations for elimination of contaminants and authentication of isolates in ancient ice cores. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton University Press, Princeton, pp 5–21.

    Google Scholar 

  • Royston-Bishop G, Priscu JC, Tranter M, Christner BC, Siegert MJ, Lee V (2005) Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarktica. Annals Glaciol 40:145–150.

    Article  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in super cooled cloud droplets. Geophys Res Lett 28:239–242.

    Article  Google Scholar 

  • Sawstrom C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596.

    Google Scholar 

  • Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71:123–130.

    Article  CAS  PubMed  Google Scholar 

  • Sheridan PP, Miteva VI, Brenchley JB (2003) Phylogenetic analysis of anaerobic psychrophilc enrichment cultures obtained from a Greenland ice core. Appl Environ Microbiol 69:2153–2160.

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Chatervedi P, Reddy GSN, Suresh K (2005) Pedobacter himalayensis sp. nov. from Hamta glacier located in the Hymalayan mountain range of India. Int J Syst Evol Microbiol 55:1083–1088.

    Article  CAS  PubMed  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220.

    Article  CAS  PubMed  Google Scholar 

  • Smith DC, Spivak AJ, Fisk MR, Haveman SA, Staudigel H (2000) Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 17:207–219.

    Article  CAS  Google Scholar 

  • Sowers T (2001) The N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geophys Res 106:31903–31914.

    Article  CAS  Google Scholar 

  • Stibal M, Sabacka M, Kastovska K (2006) Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654.

    Article  PubMed  Google Scholar 

  • Straka RP, Stokes JL (1960) Psychrophilic bacteria from Antarctica. J Bacteriol 80:622–625.

    CAS  PubMed  Google Scholar 

  • Tung HC, Price PB, Bramall NE, Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3 km deep Greenland basal ice. Astrobiology 6:69–86.

    Article  CAS  PubMed  Google Scholar 

  • Uetake J, Kohshima S, Nakazawa F, Suzuki K, Kohno M, Kameda, Arkhipov S, Fujii Y (2006) Biological ice-core analysis of Sofiyskiy glacier in the Russian Altai. Ann Glaciol 43:70–78.

    Article  CAS  Google Scholar 

  • Vorobyova EA, Soina VS, Manukelashvili AG, Bolshakova A, Yaminski IV, Mulyukin AL (2005) Living cells in permafrost as models for astrobiology research. In: Castello JD, Rogers SO (eds) Life in glacier ice. Princeton University Press, Princeton and Oxford, pp 277–288.

    Google Scholar 

  • Wharton JRA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. BioScience 8:499–503.

    Article  Google Scholar 

  • Willersev E, Cooper A (2005) Ancient DNA. Proc R Soc Lond B 272:3–16.

    Article  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Ronn R, Brand TB, Barnes I, Wiuf C, Gilichinsky D, Mitchell D, Cooper A (2004a) Long-term persistence of bacterial DNA. Curr Biol 14:9–10.

    Article  CAS  Google Scholar 

  • Willersev E, Hansen AJ, Pointar HN (2004b) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147.

    Article  Google Scholar 

  • Xiang SR, Yao TD, L.Z. A, Xu BQ, Li Z, Wu GJ, Wang YQ, Xu BQ, Wang XR (2004) Bacterial diversity in Malan ice core from the Tibetan plateau. Folia Microbiol 49:269–276.

    Article  CAS  Google Scholar 

  • Xiang S, Yao T, An L, Xu B, Wang J (2005) 16S rRNA sequences and difference in bacteria isolated Muztag Ata Glacier at increasing depths. Appl Environ Microbiol 71:4619–4627.

    Article  CAS  PubMed  Google Scholar 

  • Yao TD, Xiang SR, Zhang XJ, Pu JC (2003) Microbiological characteristics recorded by Malan and Puruogangri ice core. Quat Sci 23:193–199.

    Google Scholar 

  • Yao T, Xiang S, Zhang X, Wang N (2006) Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochem Cycles 20(GB1004).

    Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703.

    Article  PubMed  Google Scholar 

  • Zhang XJ, Yao TD, Ma XJ, Wang NL (2002) Microorganisms in a high altitude glacier ice in Tibet. Folia Microbiol 47:241–245.

    Article  CAS  Google Scholar 

  • Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ (2006a) Flavobacterium glaciei sp. nov., a psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 56:2921–2925.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Hou S, Ma XJ, Qin D, Chen T (2006b) Culturable bacteria in Himalayan ice in response to atmospheric circulation. Biogeosci Discuss 3:765–778.

    Article  Google Scholar 

  • Zhang X, Yao T, An L, Tian L, Xu S (2006c) Vertical profiles of bacterial DNA structure in the Pupuogangri IC (Tibetan Plateau) using PFGE. Ann Glaciol 43:160–166.

    Article  CAS  Google Scholar 

  • Zhu F, Wang S, Zhou P (2003) Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from China No 1 glacier. Int J Syst Evol Microbiol 53:853–857.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miteva, V. (2008). Bacteria in Snow and Glacier Ice. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_3

Download citation

Publish with us

Policies and ethics